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Studying bats to shed light on speech and language

Sonja Vernes

Abstract

Vocal production learning - the ability to modify vocal signals based on auditory feedback - is an essential component of

human speech and spoken language. Comparative studies of vocal learning in animals will be valuable for understanding the

biology underlying this trait. Bats are highly social animals that have developed sophisticated vocal systems for navigation and

communication. Their capacity for vocal learning, small size, amenability to neurogenetic manipulations, and the long history

of studying the neuroethological traits in bats, makes them an excellent system to model vocal learning. I will present work

including highly controlled behavioural paradigms, genomic approaches, and neuro-molecular studies that aim to dissect out

the biological mechanisms underlying vocal learning in bats. These approaches aim to show how neuro-genetic mechanisms

contribute to a complex behaviour like vocal learning and may ultimately shed new light on the biology and evolution of human

speech and language.

Biography

Sonja Vernes is the leader of the Neurogenetics of Vocal Communication group. Sonja

obtained her PhD in Neurogenetics from The University of Oxford and is currently a

‘Max Planck Research Group Leader’ holding a W2 position in the Max Planck In-

stitute for Psycholinguistics in Nijmegen, The Netherlands. She is also an affiliated

Principal Investigator at the Donders Institute for Brain, Cognition and Behaviour,

Radboud University. Her research interests focus on the genetic bases of human lan-

guage and the use of bats as a model for vocal communication that can inform the bi-

ological encoding and evolution of this trait. Sonja is a founding director of the Bat1K

genome sequencing consortium (❤tt♣✿✴✴✇✇✇✳❜❛t✶❦✳❝♦♠) and a FENS-Kavli Net-

work of Excellence Scholar (❤tt♣✿✴✴❢❡♥s❦❛✈❧✐♥❡t✇♦r❦✳♦r❣).
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How machines learn to talk. Machine Learning for Conversational AI

Verena Rieser

Abstract

Conversational Artificial Intelligence (AI) makes interaction with machines possible through voice and text platforms, and is a

rapidly growing area of research and commerce. These Conversational AI Systems have experienced a revolution over the past

decade, moving from being completely handcrafted to using data-driven machine learning methods. In this talk, I will review

these current developments including my work on using reinforcement learning and deep learning models, and evaluate these

methods in the light of recent results from two large-scale studies: First, I will summarise results from the End-to-End NLG

Challenge for presenting information in closed-domain, task-based dialogue systems. Second, I will report our experience from

experimenting with these models for generating responses in open-domain social dialogue as part of the Amazon Alexa Prize

challenge.

Biography

Verena Rieser is a Professor in Computer Science at Heriot-Watt University, Edin-

burgh, where she is affiliated with the Interaction Lab. Verena holds a PhD from Saar-

land University (2008) and worked as a postdoctoral researcher at the University of

Edinburgh (2008-11). Her research focuses on machine learning techniques for spo-

ken dialogue systems and language generation, where she has authored almost 100

peer-reviewed papers. She has served as area chair for ACL for both generation and

dialogue. For the past two years, Verena and her group were the only UK team to make

it through to the finals of the Amazon Alexa Prize.
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Interpersonal speech-based interaction

Mohamed Chetouani

Abstract

Analysing human behaviours during social interactions requires to explicitly take into account all the participants. By doing so,

researchers in various domains such as psychology, psychiatry, neuroscience, affective computing and human-machine inter-

action have developed methodologies and tools for analysing and modelling human-human and human-machine interpersonal

interactions. Within this context, the challenge is to develop machines that can decode social interaction by assessing individ-

ual and interpersonal dynamics of behaviours, with the goal of analysing and predicting human’s implicit social signals and

emotional expressions. In this talk, we will show how jointly analysing individual and inter-individual behaviours offers the

opportunity to capture relevant makers of pathologies in particular in autism spectrum disorders. We will present our works

on (i) modelling parent-infant interaction using non-verbal features and the role of infant-directed speech in engagement, (ii)

computational models of multimodal emotional contagion and (iii) applications in robotics and services. Analysing human

behaviours during social interactions requires to explicitly take into account all the participants. By doing so, researchers

in various domains such as psychology, psychiatry, neuroscience, affective computing and human-machine interaction have

developed methodologies and tools for analysing and modelling human-human and human-machine interpersonal interactions.

Biography

Mohamed Chetouani is Full Professor in Signal Processing and Machine Learning

for the Human Machine Interaction Institute for Intelligent Systems and Robotics

(CNRS UMR7222) at Sorbonne University, and CSO at Batvoice Technologies. He

received the M.S. degree in Robotics and Intelligent Systems from the UPMC, Paris,

2001. He received the PhD degree in Speech Signal Processing from the same uni-

versity in 2004. In 2005, he was an invited Visiting Research Fellow at the Depart-

ment of Computer Science and Mathematics of the University of Stirling (UK). Prof.

Chetouani was also an invited researcher at the Signal Processing Group of Escola Uni-

versitaria Politecnica de Mataro, Barcelona (Spain). He is currently a Full Professor

in Signal Processing, Pattern Recognition and Machine Learning at the UPMC. His

research activities, carried out at the Institute for Intelligent Systems and Robotics,

cover the areas of social signal processing and personal robotics through non-linear

signal processing, feature extraction, pattern classification and machine learning. He

is also the co-chairman of the French Working Group on Human- Robots/Systems Interaction (GDR Robotique CNRS)

and a Deputy Coordinator of the Topic Group on Natural Interaction with Social Robots (euRobotics). He is the Deputy

Director of the Laboratory of Excellence SMART Human/Machine/Human Interactions In The Digital Society. Website:

❤tt♣✿✴✴♣❡♦♣❧❡✳✐s✐r✳✉♣♠❝✳❢r✴❝❤❡t♦✉❛♥✐✴
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Evolution of the Speech Apparatus: Monkey Vocal Tracts are Speech Ready

Tecumseh Fitch

Abstract

The capacity to produce a sufficient set of acoustically distinct phonemes lies at the heart of our ability to communicate

linguistically. For four decades, the inability of nonhuman primates to produce human speech sounds has been claimed to stem

from limitations in their vocal tract anatomy, a conclusion based on plaster casts made from the vocal tract of a monkey cadaver.

We used x-ray videos to quantify vocal tract dynamics in living macaques during vocalization, facial displays, and feeding. We

demonstrate that the macaque vocal tract could easily produce an adequate range of speech sounds to support spoken language,

showing that previous techniques based on postmortem samples drastically underestimated primate vocal capabilities. Our

findings imply that the evolution of human speech capabilities required neural changes rather than modifications of vocal

anatomy. Macaques have a speech-ready vocal tract but lack a speech-ready brain to control it.

Biography

Tecumseh Fitch is the head of the Department of Cognitive Biology at the University

of Vienna. His research has followed two main paths: the evolution of cognition, and

the bioacoustics of vocal production. He studies both topics from a broad compara-

tive perspective. Initially trained in evolutionary and behavioral biology, he did a PhD

in cognitive science at Brown University, after deciding to study language evolution

from a biological perspective. He taught in both biology and psychology departments

at Harvard and St Andrews before moving to Vienna in 2009 to co-found the new De-

partment of Cognitive Biology, within the Life Sciences Faculty at the University of

Vienna. He has recently published a book ‘The Evolution of Language’ (CUP, 2010)

and is a recipient of an ERC Advanced Grant. He has worked on a wide variety of

species, including whooping cranes, deer, elephants, dogs and many primate species,

and much of his work features direct experimental comparisons of such species with

human beings.
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Play Vocalizations in White-handed

Gibbons (Hylobates lar)

Angela Dassow1

12001 Alford Park Drive, Kenosha, Wisconsin, United States

ABSTRACT

This work explores a previously undocumented call produced by white-handed gibbons (Hylobates lar )

during a specific type of behavioral activity. The sound produced is akin to a goat bleat and is structurally

unique from the rest of the gibbons’ vocal repertoire. The behavior, which is largely playful in nature, is

modulated by the utterance of this unique call. While the development of the call production is unclear,

the function of the call appears to be a stop signal to prevent any physical harm to each other during play

bouts. This call varies in amplitude and the loudness of the call is correlated with the forcefulness of the

encounter. Early, quiet versions of this call are a precursor to later, louder calls when lighter play behavior

escalates to rougher play behavior.

INTRODUCTION

The majority of the species in the Hylobatidae family are known for their ability to produce sex-specific

vocalizations (Geissmann, 2002; Marshall and Marshall, 1976). Females produce a sequence known as a

great call, while males produce a sequence known as a coda (Raemaekers and Raemaekers, 1985). The

function and structure of these calls and the rest of the gibbons’ vocal repertoire has been the subject of

numerous studies (Clarke et al., 2006, 2012, 2015; Cowlishaw, 1992; Bartlett, 2003; Marler and Mitani,

1989; Raemaekers and Raemaekers, 1984). These studies have revealed distinct, stereotypical waveforms

that are commonly heard in wild and captive gibbon populations. Though the vocal repertoire has been

well studied in H. lar, a unique and functionally important call type has been overlooked until recently.

That this call type is so distinct from the rest of the vocal repertoire, suggests that a re-examination of wild

populations is needed to further understand the vocal interactivity between closely related individuals.

Additionally, the suggested function of this call may be evolutionarily conserved across all Hylobatids

and merits further study.

METHODS

To date, these unique calls have only been recorded in a single, related pair of captive gibbons. The

relationship between these gibbons and the methods used to capture this call and associated behavior are

described in the following sections. Though this call has yet to be recorded in another pair of gibbons,

the frequency with which the current pair utilizes this call type suggests that further examination of

individuals housed in a similar family dynamic will reveal additional support for this call as a part of the

regular vocal repertoire.

Data collection
Zoo gibbon vocalizations were gathered from August 2012 to September 2013 at the Racine Zoological

Society in Racine, Wisconsin, United States. This zoo houses a father-daughter pair of adult white-handed

gibbons. The father was born in the wild and the daughter was born in captivity. Both animals were

habituated to the presence of the observer and recording equipment for a minimum of one hour prior to

recording each day.

Recording equipment was set up outside of the gibbon enclosures to record their natural vocalizations.

The recording equipment included a Vidpro XM-55 Condenser Shotgun Microphone, a Blue Yeti Pro

USB Condenser Microphone, both recording at 44.1 kHz, and a shock mount to reduce ambient noise

interference. Recordings were taken 2-3 times per week for approximately 7 hours per day. During this

time, the gibbons were free to move around their enclosure and were not exposed to any toxic agents

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019
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or restrained for any invasive medical procedures. These recordings were used to establish the vocal

repertoires of the captive gibbons. This work was approved by the University of Wisconsin-Madison’s

Research Animal Resource Center (RARC) and Institutional Animal Care and Use Committee (IACUC

protocol number is L00452-0-08-12), Gibbon Species Survival Plan (SSP) Coordinator and Director of

the Racine Zoological Society which is an Association of Zoos and Aquariums (AZA) accredited zoo.

RESULTS

Twenty-eight hours of vocalizations and nineteen hours of video footage were obtained from over 450

hours of observations.

Description of bleats

A total of 74 bleats were isolated from the Racine Zoological Society pair that range in duration from

.4-1.8 seconds. The average minimum frequency is 595 +/- 23.5 Hz and the average maximum frequency

is 9,891.5 +/- 277.7 Hz. Figure 1 provides a spectral view of the complexity of a single bleat uttered by

the male gibbon.

Description of behavior

The initial behavior associated with this call moves from rougher grooming of one another to both gibbons

locking their hands and feet together. Upon grasping one another, they roll around and bare their teeth.

During this time, the behavior moves from a more playful nature to a more aggressive, but still playful,

nature and the more submissive individual utters the bleating sound. As the roughness of the play behavior

escalates, the amplitude of this call increases until the aggressor backs down and moves away.

Figure 1. A single bleat call produced by the male gibbon at the Racine Zoological Society.

DISCUSSION

A previously undescribed sound from a father-daughter pair of H. lar at the Racine Zoological Society

was recorded and described. The father, who was born in the wild, and the daughter, who was born in

captivity, produce a quiet call for a very brief period of time daily. This bleat-like call is so quiet that it is

likely only conveying potential information content to individuals within 3-4 meters of the vocalizer. The

function of such a call is likely to inform the aggressor that the interaction has escalated too far. This call

does vary in amplitude and the loudness of the call is correlated with the aggressiveness of the interaction.

The origin of this call is still unclear, but there are several possibilities for why this has not been

observed previously. First, the amplitude of this call is very low and as such an observer would have to be

within 3-4 meters of the gibbons to hear it. In the wild, this is highly unlikely. Second, unlike most of

their other calls, this bleat was typically observed either mid-day or in the afternoon. This is generally

not the best time to record in the wild due to increased ambient noise and decreased sound transmission

2/3
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quality from humidity and warmer air (Larom et al., 1997). Third, this call may be a function of familial

play or aggression (Cowlishaw, 1992). In the wild, the offspring would have dispersed to a new territory

away from their parents.

Describing these bleats as novel has its drawbacks, especially when the categorization is based off

of a data set that is as small as one pair of gibbons. It is unlikely that anything is damaged in their

supralaryngeal vocal tract because the rest of their vocal repertoire is the same as the wild gibbons.

Additionally, a large number of experts across several other zoos and sanctuaries have been consulted

and they have confirmed that they have not observed this behavior or vocalization. These experts, which

are the main caretakers of their respective gibbons, were given a video of the Racine gibbons bleating

and fighting and they were asked whether this behavior or sound was found in their pairs of gibbons.

Currently no observations of the call or behavior which leads up to this call have been made with 40

other gibbons under the care of 5 other zoos and sanctuaries. One other pair of gibbons does engage in

similar chasing behavior and unusual call production though how similar the sounds are to one another

will require further research. One contributing factor that may be relevant to why the Racine gibbons

consistently exhibit play behavior and vocalizations, but most of the other gibbons do not is the fact that

they are related to one another whereas most of the other pairs are not. The one pair that does appear

to behave somewhat similarly is a pair of half-brothers who have also been housed together for several

decades. Given the rarity of housing related gibbons together into adulthood, it would not be expected to

witness such behavior. Functionally, it is plausible that all gibbons can produce these calls and behavior

and this familial play is part of normal gibbon development. As individuals reach maturity, this play

behavior may become more physical and it could mark a point in which the offspring need to leave

the group and search for their own territory. In captive settings, the ability to disperse is restricted and

therefore this behavior is more persistent. Future work should focus on related pairs of gibbons to further

test the hypothesis that this behavior is typical play behavior between related individuals.
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Abstract 
The use of socially engaging robots with functions as different as education, rehabilitation and companionship is 

spreading in everyday life to assist human beings. The case of artificial pets – robotic agents that exhibit pet-like 

behaviour – is peculiar in the sense that the assistance provided by artificial pets is the attachment elicited in the 

human agent towards the robot, rather than a service provided to the partner. This social bond is sustained by three 

features: artificial pets appear to act autonomously (to possess animacy, the property of being alive), they respond to 

the partner’s actions (with social engagement) and they depend on the partner. Here we use vocal interactions 

between artificial agents and domestic chicks (Gallus gallus) to investigate the role of animacy and social 

engagement in establishing social attachment between artificial pets and non-human animals. Domestic chicks 

exhibit several advantages as a model system: they promptly attach to artificial objects through the mechanism of 

filial imprinting, they are precocial and can be easily tested soon after birth, they are spontaneously attracted by cues 

of animacy, they have a strong social motivation, they are a model of physiological development and 

neurodevelopmental disorders such as autism, they are a species with large economical relevance.  

This approach has potential applications (a) for neuroscience and biomedical research interested in the development 

of social attachment and vocal interaction (b) in farming (c) for the development of robots that assist pets in the 

absence of their owners.  
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Abstract 
It is unclear why some voices are perceived as more attractive than others. Here we investigated the acoustic 

correlates of Aegyo (애교), a popular Korean speaking style used to appeal others by enhancing one’s ‘cuteness’. 
Fourteen Seoul Korean speakers (8F, 6M) were recorded uttering numbers from one to ten, in both native Korean 

and Sino Korean words. Pitch, intensity, and duration were measured and statistically analyzed. We found that 

Aegyo speaking style is phonetically more variable compared to non-Aegyo conversational speech. Aegyo 

significantly increased pitch range (χ²(1)=86.966, p<2.2e-16***), mean pitch (χ²(1)=6.805, p=0.0091**), intensity 

range (χ²(1)=5.354, p=0.0207*), and duration (χ²(1)=63.675, p=1.457e-15***). This is in agreement with previously 

reported auditory impressions. In the future it will be important to understand the perceptual effects of Aegyo on 

attractiveness in listeners and non-listeners of Korean.  

 

Introduction 

Defining what makes a voice attractive or not is a goal long pursued but still far from being achieved. Although 

voice attractiveness has become an interdisciplinary focus of interest, there has been a considerable amount of 

research done from an evolutionary approach (for a detailed review, see Pisanski & Feinberg, 2019), with many 

studies exploring sexually dimorphic correlates such as fundamental and formant frequencies (e.g. Borkowska & 

Pawlowski, 2011; Pisanski & Rendall, 2011). Despite the observation of distinct patterns in men’s and women’s 
vocal preferences, voice attractiveness highly relies upon the interaction between speaker and listener and their 

individual preferences, as well as possible within-subject variation. Moreover, research suggests that speakers 

manipulate acoustic features of their voices depending on the conversational context and partner, for instance, to 

sound more attractive and in seductive interactions (Fraccaro et al., 2013; Hughes, Mogilski & Harrison, 2014; 

Leongómez et al., 2014). 
In these lines, there is a widespread practice among young speakers in South Korea to enhance their vocal 

appeal by performing, sometimes even professionally, a speaking style known as Aegyo. Aegyo (=애교) can be 

defined, according to Puzar & Hong (2018), as “a layered articulation of behaviours, gestures, vocal and linguistic 
adjustments, narratives and fashions that serve to enact child-like charm and infantilised cuteness” (333). 

Although it has been argued to present strong similarities to baby-talk in Korean language (McGuire, 2015; Puzar & 

Hong, 2018), Aegyo is a complex phenomenon that has been rarely examined and few studies provide only social 

and demographic descriptions of it (Park, 2010; Puzar, 2011; McGuire, 2015; Puzar & Hong, 2018). In contrast, 

linguistic aspects of this speaking style have been solely introduced by Strong (2012), who claims that mean pitch is 

A
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key in defining Aegyo voice, but other several cues remain still unexplored. Perceptually, six acoustic features have 

been reported as possible indicators of Aegyo: palatalization (Strong, 2012); duration and nasalization (Strong, 

2012; Puzar & Hong, 2018); whispering voice and high-pitched voice (McGuire, 2015); and consonant 

strengthening (Puzar & Hong, 2018). Additionally, there is anecdotal evidence suggesting that, although speakers 

using Aegyo are often perceived as attractive and desirable in South Korea, it seems that most people from 

western countries (whose reactions to Aegyo are very popular on YouTube) find this speaking style annoying or 

even ludicrous, which means that Aegyo may provide us a window to observe the variation of vocal preferences 

and voice attractiveness across languages and cultures. Therefore, we decided to carry out an acoustic profile of 

the Aegyo performance as a first step towards an understanding of the acoustic-phonetic characteristics in this 

speaking style. We compiled the first systematic data collection on Aegyo, including recordings of both read and 

spontaneously elicited speech under situations in which Aegyo is common and uncommon and with instructions to 

either use or not use Aegyo. With this material we are planning to understand the attractiveness of Aegyo by 

Korean and non-Korean listeners in the future. Here, we provide a first description of the acoustic-phonetic 

characteristics of Aegyo.    

 

Materials & Methods 
Fourteen Seoul Korean speakers, eight females and six males (age range: 25 to 31), were recorded. Recordings 

took place in the sound-treated booth in the Phonetics Laboratory at Seoul National University using Tascam DR-

100MKIII and SHURE 10A head-worn microphone (sampling rate = 44.1 kHz, quantization level = 16 bit). The 

recording consisted in the participants uttering both native Korean and Sino-Korean numbers from 1 to 10, first in 

‘Aegyo speaking style’ and second in ‘Non-Aegyo speaking style’. Participants were explicitly and constantly asked 
either to perform Aegyo to full (Aegyo speech style) or not to perform Aegyo to least (Non-Aegyo speech style), by 

visual and oral instructions.  

The collected data was automatically aligned and annotated into three tiers (phoneme, word, and 

utterance) by using a Korean Phonetic Aligner (Yoon & Kang 2013), followed by manual inspection and correction. 

The three tiers were separately analyzed in order to take the difference between prosodic units into account. 

When defining prosodic units larger than a segment, we relied on the orthographic and morphological standard: 

word breaks to define ‘word’ and line breaks to define ‘utterance’. Five acoustic correlates were analyzed for each 

tier: mean pitch, pitch range, mean intensity, intensity range, and duration. As large variability of speaker and item 

was observed, the mixed effects model was chosen for statistics, defining speaker and item as random variables. 

Speaking style and the acoustic correlates were used as fixed variables.  

 

Results and Discussion 
A phonological analysis was first conducted to provide an overall perspective on Aegyo. To put it in a nutshell, the 

collected Aegyo was prosodically variable, but segmentally less variable, compared to non-Aegyo. The change of 

tone and loudness was more frequent and extreme in Aegyo, while different segments were merged into one, 

reducing the intelligibility. Vowels showed centralization (e.g. [ʌ]→[o]) and monothongization, whereas 

consonants showed glottalization and frontalization (e.g. [tɕ̠, l, s]→[t]; [th̠ɕ]→[th̠]; [tɕ̠', s']→[t']).   

 The phonological impressions were supported by our phonetic analysis that showed the significantly 

larger range of pitch and intensity in Aegyo speaking style. The mean pitch was also significant, as Strong (2012) 

claimed, albeit less significant than pitch range. Meanwhile, the significance varied from prosodic units as below: 

 

 

dep. var. 

utterance word phoneme 

χ²(1) p-value sig. χ²(1) p-value sig. χ²(1) p-value sig. 

pitch range 9.852 0.0016 *** 132.27 <2.2e-16 *** 86.966 <2.2e-16 *** 

int. range 2.258 0.1329 . 3.857 0.0495 * 5.354 0.0207 * 
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mean pitch 1.939 0.1637 . 8.106 0.0044 ** 6.805 0.0091 ** 

mean int. 0.343 0.558 . 2.206 0.1375 . 0.085 0.7704 . 

duration 13.934 0.0002 *** 142.03 <2.2e-16 *** 63.675 1.457e-15 *** 

 

 When it comes to segmental parameters, significantly longer duration was observed in Aegyo speaking 

style. However, further analysis on the segmental level is desired to explore the reason behind the low speech 

intelligibility of Aegyo. Our subsequent study will also include the remaining data of longer elicited speech and 

spontaneous speech.  

Aegyo is a speaking style of Korean applied in situations in which voices need to gain in attractiveness. In 

this study we investigated some acoustic-phonetic characteristics of Aegyo. We found that – in line with auditory 

impressions – Aegyo shows a higher variability of segmental and suprasegmental characteristics. As such, Aegyo is 

similar to other speaking styles with higher than average acoustic variability such as infant directed speech or clear 

speech, two speaking styles of very different intentions, although auditorily, Aegyo is clearly distinguishable from 

such speaking styles and other speaking styles – in particular ‘clear speech’ – which are not targeted at making 

voices more attractive. This may be due to the less segmental variability of Aegyo, which still needs to be verified 

by further acoustic analysis. Meanwhile, this may also mean that the type of average variability results obtained in 

Aegyo in the present study is bound to vary systematically between other phonetically variable speaking styles for 

it to become distinctive. In future research it will be interesting to understand (a) the characteristic acoustic-

phonetic patterns of Aegyo and (b) how such patterns contribute to make speech more attractive in Korean. In 

respect to (b) it will further be interesting to understand whether such attractiveness patterns are universal or 

whether they are a result of a culturally shaped understanding of voice attractiveness in Korean.  
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Introduction 
Emotions, unlike mood, are short-lived reactions associated with specific events. They can be 
characterized by two main dimensions, their arousal (bodily activation) and valence (negative versus 
positive) (Mendl et al. 2010). Knowledge of the valence of emotions experienced by domestic and captive 
animals is crucial for assessing and improving their welfare, as it enables us to minimize the negative 
emotions that they might experience and to promote positive ones. Emotions can affect vocalizations 
directly or indirectly through the brain, lungs, larynx or vocal tract. As a result, vocal expression of 
emotions has been observed across species (Briefer 2012), and could serve as a non-invasive and 
potentially very reliable tool to assess animal emotions. In pigs (Sus scrofa), vocal expression of emotions 
has been relatively well studied (e.g. Leliveld et al. 2016; Briefer et al. 2019). However, it is not known if 
the vocal indicators revealed in previous studies are valid across call types and contexts. To find this out, 
we conducted a meta-analysis of the effects of emotional valence on pig vocalizations, including calls 
recorded in the most common emotional situations encountered by pigs throughout their lives, from birth 
to slaughter.  
 
Materials & Methods 
Recordings 
Pigs of various ages (piglets to finishing pigs) were recorded in 22 contexts triggering both negative 
emotions (e.g. crushing, missed nursing, castration, fear conditioning, isolation, restraint, barren 
environment, and slaughter), and positive emotions (e.g. nursing, huddling, social reunion, exposition to 
an enriched arena, and running) (for more details see Briefer et al. 2019; Illmann et al. 2013; Tallet et al. 
2013; Linhart et al. 2015; Leliveld et al. 2016). The putative valence of the various contexts was based on 
the function of emotions to trigger avoidance (negative emotions) or approach (positive emotions) and the 
behavior of the pigs (Mendl et al. 2010).  
 
Vocal analyses 
In order to exclude very short sounds, in which parameters might not be accurately measured, only high 
quality calls with a duration > 0.05 s were selected for the acoustic analysis (n = 6017 calls). We used the 
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acoustic features of the calls to classify them as low-frequency stable, modulated or tonal calls, high-
frequency stable or modulated calls, or mixed calls (6 types), based on Tallet et al. (2013). Then, 
depending on the call type, we extracted 11 to 18 vocal parameters using a custom-built script in Praat, 
which batch-processed the analyses and the exporting of output data. The measured parameters 
belonged to the six following categories: source-related (fundamental frequency, “F0”), energy spectrum 
distribution, duration, amplitude modulation (“AM”), noise, filter-related (vocal tract resonances).  
 
Statistical analyses 
To eliminate redundancy, we used a principal component analysis to select one vocal parameter within 
each category, which explained most of the variance in the data across all call types, for further analyses. 
Since the minimum formant dispersion (“DFmin”), originally categorized along with the linear predictive 
coding (“LPC”) coefficients never associated (i.e. loaded highly (r >= l0.5l) on the same PC) with these 
parameters, it was analyzed separately. These selected seven parameters (i.e. one for each of the six 
categories and DFmin; Table 1) were then used as outcome variables in linear mixed-effects models 
(lmer function in R software), to assess if they were affected by the valence of the contexts (positive or 
negative; fixed factor). The models included as control factors the age category and the call type. The 
context of production nested within the identity of the pig, nested within the experiment number, nested 
within the team who performed the recording was added as a random factor to control for repeated 
measurements and dependencies. The p-values were calculated with parametric bootstrap tests. 
 
Results and Discussion 
Five of the seven tested vocal parameters were affected by the valence of the context (Table 1). After 
controlling for the type of call and the age category (control factors), our analyses revealed that pigs 
produced calls characterized by a higher center of gravity, a shorter duration, less noise (lower Wiener 
entropy), lower formants (measured using the formant dispersion) and LPC coefficients in positive 
compared to negative contexts.  
 

Table 1. Model estimates, lower (lo.ci) and upper (up.ci) 95% confidence intervals for the vocal 
parameters included in the linear mixed-effect models, as a function of the valence of the contexts 
(*p<0.05; **p < 0.01; “NS” Non significant). 
 

Parameter Valence estim lo.ci up.ci P value 
Mean F0 (Hz) Pos 132.91 124.81 141.13 NS 

Neg 138.19 130.49 146.26  
Spectral centre of gravity (Hz) Pos 967.70 877.57 1084.53 * 

Neg 895.54 806.46 996.58  
Duration (s) Pos 0.17 0.14 0.21 ** 

Neg 0.42 0.34 0.51  
AM extent (dB) Pos 5.77 4.60 7.30 NS 

Neg 5.67 4.50 7.24  
Wiener entropy Pos -1.63 -1.84 -1.44 ** 

Neg -1.52 -1.71 -1.33  
DFmin (Hz) Pos 846.64 778.01 921.82 ** 

Neg 964.72 899.40 1035.78  
4th LPC coefficient (Hz) Pos 3913.22 3742.58 4069.90 ** 

Neg 4185.93 4020.41 4334.90  
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Some of these changes are in line with previous findings (e.g. spectral center of gravity, Leliveld et al. 
2016; duration, Briefer et al. 2019). In particular, shorter durations in positive contexts have been 
observed across multiple species and could be a feature conserved throughout evolution (Briefer 2012). 
Overall, our results suggest that some parameters change with the valence experienced by pigs in a 
similar way across call types. These vocal parameters could be very useful for developing automated 
methods to monitor pig welfare on-farm. 
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Abstract 
Vocal learning is a vital ingredient in the acquisition of culturally-transmitted communication systems such 
as human language or birdsong. Whereas developmental language acquisition is recognized to be a 
mess of processes both sensorimotor and social, students of birdsong learning have largely focused on 
vocal imitation—i.e., the problem of learning what to sing. However, for certain songbirds, such as the 
gregarious zebra finch, the question of how juveniles learn to use their vocalizations in social 
interactions—i.e., how birds learn how to sing—may be equally salient. The relative simplicity and 
temporal precision of the adult male zebra finch’s crystallized song has made it a fruitful model system for 
studying behavioral and neurobiological mechanisms of imitative vocal learning. However, beyond the 
core sequence of song elements copied from a tutor during development, zebra finch song bouts exhibit 
within-individual diversity in both sequence and timing, as well as variability between individuals in the 
degree of this structural diversity. How such performance-level plasticity is acquired and whether it serves 
any social function is not known. Zebra finches are group-living, and males sing abundantly in general 
social as well as female-directed settings. Beyond courtship, song may also play a role in mated pair 
maintenance. Before exploring these various functions, let alone how the young bird acquires them, a 
fuller characterization of zebra finch singing plasticity is required. Previously we have observed that 
familiar males very rarely sing at the same time, suggesting that zebra finches can control the timing of 
their songs. Here we provide an introduction to the diversity and potential flexibility of zebra finch song 
performance, including a method of phenotyping individual birds’ repertoires according to temporal 
consistency and repertoire size. We then describe a biomimetic approach for probing zebra finch vocal 
interactivity by means of a software-based virtual avian interlocutor—employing three different 
instantiations which vary in their mechanisms for attending and responding to real-time acoustic input 
from a live zebra finch—aimed at reproducing patterns of turn-taking as observed in real birds. 
 

Introduction 

Vocal learning, the capacity to map sounds produced and sounds heard, is a necessary precondition for 
culturally-transmitted vocal traditions such as human languages or birdsong dialects. Because this 
capacity is seemingly rare in the animal kingdom as well as unobserved in our nearest primate relatives, 
songbirds have become a model system for exploring its neurobiological and behavioral mechanisms. An 
important parallel between vocal learning in language and birdsong is the presence of sensitive periods 
for learning during development. The analogy between birdsong and language acquisition is limited, 
however, by a focus on vocal imitation in avian vocal learning and a general conceptualization of birdsong 
learning as a process of learning what to sing. This conceptualization is yoked to a picture of birdsong 
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function that is derived mainly from the behavior of territorial species, which need to acquire the 
appropriate signals for mate attraction and repelling rivals. For communal-living birds, on the other hand, 
learning how to sing may present an additional challenge. In this respect, the zebra finch—perhaps the 
most studied songbird (Griffith & Buchanan, 2010)—has been underutilized, if not misrepresented. Zebra 
finches are not territorial, but instead live in nomadic groups of fluctuating size, breeding opportunistically 
around water availability, forming tight, often lifelong pair bonds but also associating with other individuals 
of both sexes over extended periods of time (Zann, 1996). Little is known about how vocal interactions 
accompany or mediate such ordinary features of zebra finch life. 
 
The male zebra finch has been celebrated for the simplicity and predictability of his signature song motif, 
a stereotyped sequence of crystalized vocal gestures acquired during development. Each male typically 
produces a single, idiosyncratic motif throughout his adult life. Yet birds do not emit isolated motifs when 
they sing. Rather, zebra finches ‘compose’ song bouts consisting of multiple motif repetitions which may 
be linked by variable pauses and a variety of para-motif vocalizations, which altogether give singing 
performances variability in both rhythm and sequence. These variations tend to be dismissed as 
production noise. However, analyses of large samples of song recordings (Hyland Bruno & 
Tchernichovski, 2017) reveal that individual birds have characteristic song-performance repertoires which 
occupy only small subspaces of all possible stochastic variations. Moreover, birds can be phenotyped 
along two dimensions of plasticity, according to both the temporal consistency vs. jitter and the sequential 
stereotypy vs. complexity of their songs (Figure 1). 
 

 
Figure 1. Two-dimensional space for phenotyping individual zebra finches according to the plasticity of 
their song performance repertoires. 
 
Here we take a biorobotic approach to characterizing how zebra finch singing plasticity may be 
differentially expressed in social interactions. Guided by the empirical observation that birds with 
established social bonds take turns at singing and appear to coordinate the timing of their songs so as to 
avoid overlap (Hyland Bruno & Tchernichovski, 2017), we set out to attempt to reproduce a pattern of 
turn-taking in dyadic encounters between virtual acoustic agents and live birds representing the different 
song repertoire phenotypes shown in Figure 1. 
 

Materials & Methods 
Since we don’t know a priori how zebra finches coordinate their songs, we are developing three versions 
of our virtual bird (VB) in parallel, using the flexible music programming software Max/MSP: 1) a sampler 
playback system, in which a human “plays” zebra finch; 2) an autonomous interactive agent that tracks 
the live bird’s vocalizations and responds in real time according to a predetermined set of rules; and 3) an 
autonomous interactive agent whose real-time responses are determined via machine learning. The 
preprogrammed repertoire is the same for all VBs, and consists of a typical zebra finch song motif (a 750-
ms sequence of discrete harmonic, broadband, and frequency-modulated sounds separated by short 
silent intervals) plus innate “calls,” which birds of both sexes produce singly in rapid exchanges with 
conspecifics, and which males also produce during singing, interspersed with their learned song motifs. 
Previous work has demonstrated that zebra finches readily engage in calling exchanges with a vocal 
robot (Benichov et al., 2016). In trials with VB #1, the human operator will aim to “sing” as much as 
possible without overlapping the live bird, selecting performance types (Figure 1) or composing songs out 
of motifs and calls (and silences) in real time. VB #2 incorporates rudimentary machine “listening” in order 
to respond autonomously. The VB tracks the amplitude envelope of the live zebra finch’s vocalizations 
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and extracts a running record of sound onsets and offsets. It then uses this information to determine both 
when and how to produce vocal responses. The VB singing style can be programmed in various 
configurations, either to always produce exemplars of a specific phenotype (one of the quadrants in 
Figure 1), or to mimic the exemplar or phenotype produced by the live bird. Finally, VB #3 is also an 
autonomous agent, but one which recycles and improvises on inputs from the live bird, an adaptation of 
real-time sequence modeling and statistical learning methods developed for human-computer musical 
improvisation (Assayag et al., 2006; Collins, 2014). 
 

Results and Discussion 
Building biomimetic machines and studying the resultant phenomena is a promising way of probing our 
understanding of animal behavior (Webb, 2008). Presented here is an iterative approach, inspired by 
explorations in improvised computer music (Lewis, 1999), to developing a virtual acoustic agent capable 
of simulating the overlap avoidance/turn-taking that we observe in zebra finch vocal interactions (which is 
also a hallmark of human communication systems [Levinson, 2006; Pelz-Sherman, 1998]). That empirical 
observation prompts a host of questions: How is such coordination achieved? Is successful coordination 
related to the singing phenotypes of individual birds? Are repertoires fixed or do they change over time, 
and, if so, why? How are dyadic interactions related to group dynamics? Our ultimate goal with this 
project is to generate new hypotheses that can be tested in future animal experiments. 
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ABSTRACT

Vocal interactions between humans and non-human animals are pervasive, but studies are often limited

to communication within species. Here, we conducted a pilot exploration of vocal interactions between

visitors to the San Diego Zoo Safari Park and Sampson, an 18-year-old male Hyacinth Macaw residing

near the entrance. Over the course of one hour, 82 vocal and behavioral events were recorded, and

various relationships between human and bird behavior were noted. Analyses of this type, applied to

large datasets with assistance from artificial intelligence, could be used to better understand the impacts,

positive or negative, of human visitors on animals in managed care.

INTRODUCTION

Interaction and communication between humans and domesticated animals (such as cows, horses, dogs,

and cats) are well documented (eg. Saito et al. (2013)). However, interaction between humans and threat-

ened or endangered wild species (like Hyacinth Macaws) are generally less characterized. Nevertheless,

at zoological institutions, humans have extensive contact with rare species, and human interaction is an

important element of the lives of animals in managed care.

When entering the San Diego Zoo Safari Park, a Hyacinth Macaw (Anodorhynchus hyacinthinus)

named Sampson is the first visible animal. The largest (head to tail) flying parrot, his species is classified

as vulnerable on the International Union for Conservation of Nature RedList (BirdLifeInternational, 2019).

The San Diego Zoo Safari Park was visited by 1.5 million guests in 2018, meaning Sampson is passed by

an average of 4,000 guests daily. We aimed to begin characterizing vocal interaction between Sampson

and guests in order to better understand the dynamics of human-bird vocal communication in a zoological

setting. Sampson’s enclosure is about 4x8m and is surrounded by a waist-high fence (Fig. 1) which

excludes guests from approaching too closely. Sampson can freely move within his enclosure.

Figure 1. Sampson, the Hyacinth Macaw, in his enclosure near the San Diego Zoo Safari Park entrance
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BACKGROUND

The effects of the presence and behaviors of humans on animals at zoological organizations has been

studied for several decades. The significance of humans for animals is important in at least five different

ways: as enemies, prey, symbionts, pieces of the inanimate environment, or members of its own species

(Hediger, 1969). The first and last cases have been studied to evaluate the contexts in which the presence

of humans elicits positive, neutral, or negative effects on captive wildlife in zoos.

Humans (and human-generated sounds) sometimes have negative effects on other species. For

example, visitors increased distress levels of wolfs (Pifarré et al., 2012), pandas (Owen et al., 2004),

orangutans (Birke, 2002), and construction noises increased stress in of big cats (Chosy et al., 2014).

However, certain human-animal interactions clearly benefit particular animals. The uniqueness of

each human-animal diad helps explain the rich connections between animals and their primary caregivers

(Ward, 2015). Claxton (2011) also explores the effects of daily contact with both familiar and unfamiliar

people and concludes that such interactions can lead to positive outcomes if human contact is intentionally

designed to address environmental enrichment aims. She also emphasises the importance of tailoring

human contact on a species-by-species basis. Understanding the interactions between animals and zoo

visitors can allow determination of the visitor characteristics and behaviors which are most appealing to

animals, and lead to higher levels of animal-human interaction (Cook, 1995), playfulness (Owen, 2004),

and energy expenditure (Nimon and Dalziel, 1992).

In the specific context of the vocal interactions, researchers have recently explord the concept of zoo

voices and the characteristics of the merged soundscape created from animal and human voices, as well as

animal and human generated sounds. Tunnicliffe and Scheersoi (2012) discuss ways in which zoos make

their voices available to visitors, creating dialogues and active listening. In the specific example of parrots,

we interpret physical and vocal behaviors from the animal based on interviews with the bird’s expert

caregivers as well as previous research on parrots, in particular the important work from Pepperberg

(1994) that revealed parrots abilities. Parrots are known to be vocal and social, and related parrot species

exhibit head-bobbing as part of courtship behavior (Symes et al., 2004) or as a sign of playfulness.

METHODS

In this exploratory study, we recorded one hour of audio and video of a Hyacinth Macaw’s enclosure, and

analyzed interactions between humans and the bird. Six different types of behaviors were scored: three

were human vocalizations (adult speaking to bird, child speaking to bird, and adult whistling to bird) and

three were bird behaviors (bird vocalisation, bird head nodding, and bird moving toward a visitor). We

recorded instances when visitors vocally addressed the bird (but did not score instances where humans

conversed solely with one another nor when they stopped to look at the bird without talking to him). When

guests vocalized toward the bird, they commonly (but not always) raised the tone of their voice and faced

the bird. Throughout the trials, background noise (from entry gates and human-human conversation) was

continual. These preliminary observations were obtained in the course of implementing a larger project

exploring ways to provide audio enrichment for animals in managed care.

RESULTS

During one hour, we recorded 82 instances of the six target events. Between 300 and 400 visitors entered

the park during this hour. Many visitors stopped to look at the bird and were engaged in human-human

discussions while doing so, and 34 (approximately 10%) verbally addressed the bird. We recorded 41

unique human vocal events, including 3 instances of whistling and 14 instances of children talking to the

animal. The macaw vocalized 16 times, nodded 19 times and physically approached visitors 7 times.

63% of the bird vocalisations (10/16) were preceded by less than 10 seconds by a visitor addressing

the bird (2 adult whistles, 3 child vocalizations, 5 adult vocalizations). 43% of these times (3/7), the bird

approached the visitor who just vocally addressed him. 58% of head nodding behaviors (11/19) were

preceded by less than 10 seconds by a visitor addressing the bird (2 adult whistles, 4 child vocalizations, 5

adult vocalization). The bird often responded to visitors with a combination of several different behaviors

(for example, five occurrences of vocalizing + head bobbing and two occurrences of approaching + head

bobbing + vocalizing). In four instances, the interactions between visitor and bird contained turn-taking,

dialog-like characteristics during which neither the bird not the visitor would vocalise during the other’s

turn and the bird would vocalise or nod more than once.

2/3
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Figure 2. timeline of all scored behaviors of the bird (top row) and of the human visitors (bottom row)

DISCUSSION AND CONCLUSION

Generally, animal behavior studies focus on single species. However, in managed care, the interactions

of animals with humans is of paramount importance. To our knowledge, this is the first description

of unstructured human-bird vocal interaction in a zoological setting. Unstructured communication (in

the absence of goal-oriented training, etc) comprises the majority of captive animals’ experience, and

yet these sessions are largely uncharacterized. Here we observe that Sampson’s experiences are highly

interactive, and that his vocalizations appear to be correlated with (and tend to follow) those of guests.

This study is extremely preliminary; by examining the temporal relationships between human and

bird behaviors, we can begin to draw inferences about how guests influence the behavior and engagement

levels of animals under managed care. Further studies could subdivide Sampson’s vocalizations into

various types, and the influence of variables like time-of-day, weather, and particular individual humans

could be investigated. The influence of human speech on bird vocalization and behavior is likely to depend

not only on the species of bird but also on the tendencies of individual birds. Sampson, in particular, is

described by his keepers as less ‘talkative’ than other parrots in the collection, yet clearly still has vocal

dialogue with guests. In the future, using large datasets comprised of many hours of audio recordings,

algorithms can annotate bird and human vocalizations. Autocorrelation functions can then reveal the

temporal dependence of these signals. AI approaches using deep learning could provide more in-depth

ethological understanding. Previous instances of the use of deep learning for the recognition of animal

behavior such as DeepLabCut (Mathis, 2018) could be used as a starting point. Better standards of care

will be reached as we continue to understand the impact of human visitors on animal behavior.

We wish to thank Jenna Duarte and Michelle Handrus for their extensive support. All procedures

described were approved by the Zoological Society of San Diego IACUC under proposal 19-002.
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Abstract 
We used a logic distance to investigate intra and inter-individual variation in the phrase 

combinatorics of a singing primate, the indri, which inhabits the montane rain forests of 

Madagascar. Indris combine long notes, short single notes, and phrases consisting of two, three, 

four, or five units with slightly descending frequency. We calculated the similarity across 

different individual songs using the Levenshtein distance. We then analyzed the degree of 

similarity within and between individuals and found that: i) the phrase structure of songs varied 

between reproductive males and females; ii) male contributions to the song are overall more 

similar to those of other males; iii) male contributions are more stereotyped than females' ones. 

The picture emerging from phrase combinatorics in the indris is in agreement with previous 

findings of rhythmic features and repertoire size, which also suggested that female songs are 

potentially more distinctive than those of males. 

 

Introduction 

Communication between conspecifics often involves the use of vocalizations because acoustic 

signals allow encoding a considerable amount of information in a short time (Bradbury and 

Vehrencamp 2011). Animal vocal signals can be emitted in the form of short vocalizations or 

given in sequences of variable length (Catchpole and Slater 2008) as it happens in insects, 

amphibians, and mammals (Kershenbaum et al. 2016). There are several methods for 

investigating different levels of structural information in acoustic displays. The Levenshtein 

distance is a quantitative method for measuring the similarity of sequences (hereafter LD; 

Margoliash et al. 1991). The LD is a logical distance commonly used to quantify the difference 

between two strings of data (e.g., human words, sequences of visual movements or sequences 
A
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of song themes; Gooskens 2004). This technique has often been used to measure similarity in 

human dialects (Wieling 2014), and it has been applied to animal vocal sequences, but for a very 

limited number of species (Passerina cyanea, Margoliash et al. 1991; 1994; Phylloscopus 

trochilus, Gil and Slater 2000; Megaptera novaeangliae: Helweg et al. 1998; Tougaard and 

Eriksen 2006; Garland et al. 2012). When seen in comparison with humans, animals showed a 

limited combinatory ability to concatenate vocal emissions in phrases, at least in the acoustic 

domain (Berwick et al. 2011), but the information available on the variability within a species is 

very little (Honda and Okanoya 1999; Takahasi et al. 2010). Moreover, few investigations on 

primate vocal sequences are currently available and none of them are evaluating the stereotypy 

of song structure between sexes using LD (Gustison et al. 2016).  

Indris (Indri indri, Gmelin 1788) represent a distinctive species for studying vocal 

communication because of its rich repertoire (Maretti et al. 2010) and the impressive long-

distance songs, which are unique among lemurs (Gamba et al. 2016; Torti et al. 2017). The song 

of the indri consists of a long series of modulated notes, organized in phrases (Gamba et al. 

2011). Male and female indris within a group, including juveniles, take part in a chorusing song, 

which lasts 40-250 s (Maretti et al. 2010). Previous research showed that the indris can emit 

songs in different context and that the song can elicit different behaviors depending on their 

acoustic structure. Cohesion songs, emitted when the animals were dispersed in the territory, 

were followed by a displacement of the emitters significantly higher than that following the 

advertisement songs, which were usually given when the animals where in visual contact (Torti 

et al. 2013). Other studies have shown that male and female contributions to the song differ, both 

quantitatively and qualitatively, in the temporal and frequency structure of units, and repertoire 

size (Giacoma et al. 2010; Sorrentino et al. 2012). Sex dimorphism is also present in the 

modulation of the frequency of vocal emissions, in the duration of note types and the rhythmic 

structure of a contribution (Gamba et al. 2016; De Gregorio et al. 2018). Because group 

encounters in the indris are rare (Bonadonna et al. 2014; Bonadonna et al. 2017), it has been 

suggested that songs may play a role in finding a partner and mediate pair formation.  

Since previous work (De Gregorio et al. 2018) shows that females adjust their contributions in 

order to achieve the synchronization with males, we hypothesize that this adjustment can be also 

reflected in a sexually dimorphic use of phrases combination. Studies of song structure in bird 

duets suggested that females' song would be more acoustically variable than that of males 

accordingly to the territorial model of duet evolution, which is consistent with socially 

monogamous pairs that actively defend their territory. The active role of females of Australian 

magpies (Gymnorhina tibice) in territorial defense was correlated with a song repertoire more 

elaborate in comparison to that of the male. Repertoires of females were as large or larger and 

more complex than those of males, on the level of both the syllable and the song (Brown and 

Farabaugh 1991). Like Australian magpies, indri groups occupy non-overlapping areas in the 

forest (Pollock 1979) and use the songs to inform neighboring groups about the occupation of a 

territory and to actively defend the territory during group encounters (Torti et al. 2013). As the 

indris utter advertisement and cohesion songs (Torti et al. 2013), by which they inform neighbors 

about the sex, age, and status of singing individuals (Giacoma et al. 2010; Sorrentino et al. 2012) 

and bring together the members of a group (Torti et al. 2013), we predicted that the female 

contribution to the song would be structurally different than that of males. 

 

Materials & Methods 
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Observations and recordings 
We studied 8 groups (Ntot= 36 individuals) living in the Maromizaha Forest (18°56'49''S, 

48°27'53''E). We recorded the animals between 2011 and 2017. We observed a social group per 

week, approximatively from 6 AM to 1 PM. All recordings were carried out without the use of 

playback stimuli, and nothing was done to modify the behavior of the indris. We recorded 142 

songs, consisting of duets and choruses with a maximum of five individuals singing in the same 

song. For the analysis, we considered a total of 17 focal animals: nine reproductive adult males, 

and eight reproductive adult females. The different number of males and females is motivated by 

the fact that, during the study period, the reproductive male of a group changed. All the songs 

were recorded using solid-state recorders (Olympus LS05, Tascam DR-100, Tascam DR-05) at a 

distance comprised between 2 and 20m. We always kept the visual contact with the vocalizing 

animals and maximized our efforts to face the focal animals during the emission of the song. 

Sequences from multiple years were present in the sample, but the songs were all labeled as 

advertisement songs and were recorded in the same context (Torti et al. 2013). Using the focal 

animal sampling technique (Altmann 1974), we were able to attribute each vocalization to its 

signaler. We will refer to an individual' singing within a song or a chorus as an ‘individual 

contribution.’ 
 

Acoustic and statistical analyses 
We edited segments containing indri's songs using Praat 6.0.30 (Boersma and Weenink 2008) 

and BORIS 5.1 (Friard and Gamba 2016). We saved each recorded song in a single audio file (in 

WAV format). We saved the information related to the identity of each singer in a Praat textgrid. 

We then labeled all the vocal units according to their belonging to a song portion (long notes or 

descending phrases, see Torti et al. 2013 for details) and to a descending phrase (hereafter, DP; 

see Torti et al. 2017 for details). We considered phrases consisting of two (DP2), three (DP3), 

four (DP4), five (DP5), and six (DP6) units. This information was saved in Praat and exported to 

a Microsoft© Excel spreadsheet (Gamba et al. 2012). 

To understand whether there were differences in song structure between sexes, we investigated 

the DPs combinatorics in each individual contribution. We transformed each contribution in a 

string of labels separated by a break symbol (e.g., DP2|DP3|DP4|DP3). We obtained 142 strings 

for females, and 119 strings for males (with an average of 13.2 songs per individual, SD = 5.91). 

We calculated the Levenshtein distance (LD) for each pair of strings (package StringDist 0.9.4.2 

in RStudio) because this methodology provides a robust quantitative approach for the study of 

animal acoustic sequences (Kershenbaum and Garland 2015). It calculates the minimum number 

of necessary changes (insertions, deletions, and substitutions) to transform one string into 

another (Kohonen 1985). We obtained a squared matrix consisting of the distances between each 

pair of strings. We then averaged LDs to calculate within- and between-individual means and to 

investigate whether females and males differed in their degree of variation. For this purpose, we 

ran Mantel tests (9999 randomizations) using a matrix featuring the average individual means 

against a model matrix consisting of 0 when the corresponding individuals were of the same sex 

(Krull et al. 2012), and 1 when they were opposite sexes (package vegan in RStudio). When 

investigating differences at the group level or within-sex, we used the non-parametric paired 

samples Wilcoxon test to compare the average individual LDs of each member of a pair or the 

within- versus between-individual LDs. In the case of such a small sample size, the Mantel test is 

not recommended (Legendre and Fortin 1989). Only for the Wilcoxon test, the group in which 

the male changed was entered twice, considering the two pairs as different groups. 
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Results and Discussion 
We analyzed 260 individual contributions consisting of a total of 2018 phrases. We obtained 77 

± 21 phrases per male and 78 ± 23 phrases per female. We found that average phrase duration 

was 1.285 s (range: 0.380 - 3.000 s). The number of phrases in the individual song ranged 

between 2 and 27 phrases. 

We found a significant difference between the LDs calculated for males and females, where 

females showed higher average individual means than males (Mantel test: r = 0.167, p-value = 

0.002). In all groups, the females had higher LDs (LD = 6.497 + 1.674) than those of males (LD 

= 3.946 + 0.814) showing that female contribution to the song was less stereotyped (Fig. 1, 

Wilcoxon paired test: V = 0, df = 7; p-value = 0.007813).  Both females and males showed a 

higher variability at the between-individual (LDfemales = 7.386 + 0.709, LDmales = 4.885 + 0.325) 

than at the within-individual level (Fig. 1), except for the females of groups 4 and 8. Overall, we 

found a significant difference between within- and between-individual LDs (Wilcoxon paired 

test: V = 0, df = 7;  p-value = 0.007813). 

 

 
 

Figure 1: Comparison of Average Levenshtein Distance among sexes and individuals, in the nine studied groups.  

Bar plot describing the individual and overall degree of stereotypy and variability expressed by the average 

Levenshtein Distances (LDs). Within-individual LDs are reported for females (white bars) and males (black bars), as 

well as between-individual LDs (grey bars for females, striped bars for males). Group 3 is reported twice because 

the male of the reproductive pairs changed in 2014. Capped lines represent Standard Deviation 

 

We found support for our prediction that the phrase structure of songs varied between 

reproductive males and females. The LDs showed that the between-individual stereotypy of male 

contributions is much higher than females' one. Males, therefore, appeared to produce songs that 

are overall more similar to those of other males and showing higher stereotypy when compared 

to females. In agreement with previous studies that reported sexual dimorphism in the overall 

timing and repertoire size (Giacoma et al. 2010), and the frequency modulation, duration and the 
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rhythm (Gamba et al. 2016; Torti et al. 2017, De Gregorio et al. 2019), we found that male and 

female indris also differed in the phrase combinatorics of their songs. This result is in line with 

the hypothesis that female components of the song were more complex than that of males, 

suggesting that singing for females may serve to advertise the mated status of their partner and 

prevent extra-pair copulations and male desertion, as it happens in birds (Levin 1996). In 

agreement with previous findings on the different role of males and females during the song 

(Giacoma et al. 2010), we found that female song is potentially more distinctive than that of 

males. We expanded the findings of Sorrentino and colleagues (2012) showing that females not 

only have a broader repertoire of units, but they also emit descending phrases that we did not 

observe in males (e.g., descending phrases of six units).  

These results are in agreement with previous finding on birds (Brown and Farabaugh 1991) 

confirming that in those species in which females are involved in territorial defense, their 

repertoires are as large or larger than those of males, on the level of both units and phrases. In 

support of the higher variability in female song structure, there is the recent evidence that 

genetics plays a critical role in determining the characteristics of DPs in males, whereas it may 

have a lesser impact on female songs (Torti et al. 2017). A more variable song structure may, in 

fact, add up to a more flexible structuring of the phrase notes, but further investigations are 

needed. 

This work also expands on and complements previous studies on humpback whales (Helweg et 

al. 1998; Tougaard and Eriksen 2006), showing that the Levenshtein distance is simple, 

efficiently computable and highly applicable to any behavioral data that are produced in a 

sequence.  Our results confirmed that the Levenshtein distance method is a simple but powerful 

technique that can be applied to assess stereotypy or divergence between sexes. 
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Abstract 
This study investigates domestic cat meows in different contexts and mental states. Measures of 

fundamental frequency (f0) and duration as well as f0 contours of 780 meows from 40 cats were 

analysed. We found significant effects of recording context and of mental state on f0 and 

duration. Moreover, positive (e.g. affiliative) contexts and mental states tended to have rising f0 

contours while meows produced in negative (e.g. stressed) contexts and mental states had 

predominantly falling f0 contours. Our results suggest that cats use biological codes and 

paralinguistic information to signal mental state. 

 

Introduction 

Acoustic cues to paralinguistic information like a human speaker’s physical and emotional state 

can be found in fundamental frequency (f0), intensity and duration (see e.g. Gangamohan, 

Kadiri, & Yegnanarayana, 2016). Some of these cues are related to so called biological codes, 

which can be observed in humans as well as nonhuman species. An example is that according to 

the ‘frequency code’ high f0 indicates smallness, submission, friendliness, and uncertainty, while 

low f0 signals largeness, dominance, aggressiveness, and certainty (Morton, 1977; Ohala, 1983; 

Gussenhoven, 2016). Animals are able to experience and express emotions (Bekoff, 2007, p. 42; 

Briefer, 2012), and as a consequence, it is reasonable to expect that their physical and mental 

state influences their vocalisations to include paralinguistic information found in f0 and duration. 

Domestic cats (Felis catus) are – next to dogs (Canis lupus familiaris) – the most 

common companion animals in the world. Over 600 million cats are said to live with humans 

worldwide (Saito, Shinozuka, Ito, & Hasegawa, 2019). Cats have developed an extensive, 

variable and complex vocal repertoire, probably best explained by their social organisation, their 

nocturnal activity and the long period of association between mother and young (Bradshaw, 

Casey, & Brown, 2012). Moreover, as a consequence of their interaction with human beings, cats 

have learned to vary and nuance their voices ever since they were domesticated, approximately 

9500 years ago (Vigne, Guilaine, Debue, Haye, & Gérard, 2004).  
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Cat–human communication is considered to be understudied (Saito et al., 2019). The 

findings of only a few studies on the topic suggest that the acoustics of cat vocalisations vary 

depending on the context, and the cats’ emotional state. Brown, Buchwald, Johnson, & Mikolich 

(1978) compared sounds from kittens and adult cats in isolation, food deprivation, pain, threat, 

acute threat and kitten deprivation and found differences in duration, initial and peak f0. Nicastro 

(2004) found acoustic differences (duration and mean and max f0, first and second formant, and 

spectral tilt) between meows produced by domestic cats and African wild cats (F. silvestris 

lybica) in food-related, agonistic, affiliative, obstacle and distressing contexts. Yeon et al. (2011) 

analysed domestic cat vocalisations (growls, hisses and meows) produced by domestic and feral 

cats in one affiliative and four agonistic contexts and found differences in duration, mean 

fundamental and peak frequency. Schötz and van de Weijer (2014), finally, compared f0 of 

domestic cat meows in food- and vet-related contexts and found a predominance of rising 

contours in food-related contexts, and of falling contours in vet-related contexts, as well as larger 

f0 standard deviation in food-related meows.  

In the present study we compare duration and f0 in meow vocalisations by domestic cats 

in six different contexts and four mental states. We hypothesised that cats use biological codes to 

convey paralinguistic-like information like emotion and intention depending on the context in 

which the cat was recorded and on their mental state.  

 

Materials and Methods 
The collected material consisted of audio and video recordings of 58 cats interacting in everyday 

contexts with humans (mainly their owners, but occasionally with one of the experimenters). The 

recordings were made using a GoPro Hero 4 Session video camera and a Roland R-09HR 

WAVE/MP3 recorder with Sony ECM-AW4 Bluetooth wireless microphones attached to collars 

worn by the cats. In addition, whenever a cat did not accept to wear the collar or when owners 

recorded and sent us videos recorded by them privately, other equipment (e.g. cell phones) was 

occasionally also used. Care was always taken to place or hold the microphone as close to the 

cats’ mouths as possible without disturbing their natural behaviour. Audio files (unless recorded 

using the Roland R-09HR) were extracted from the video files as 44.1 kHz, 16 bit WAV files. 

 The material used in this study was recorded in one of the following six contexts: while 

waiting at a door (or a window) (door), while approaching a befriended human or cat (greeting), 

while soliciting or receiving food (food), while soliciting or during play (play), while being lifted 

(lifting) or while being in a cat carrier (transport box). Of these, the first five were relatively 

positive contexts while the last one generally was relatively negative for the cats. The mental 

state of the cats was classified as attention seeking, content, discontent or stressed based 

primarily on visual cues of the body, head and tail posture and movements (see e.g. Bradshaw & 

Cameron-Beaumont, 2000, pp. 73–74). Finally, each vocalisation was classified as either a 

meow, trill, growl, hiss, howl, snarl, purr or chirp (or a combination of two types), as described 

in Schötz (2018, pp. 254–257). Naturally, not all cats produced vocalisations in all contexts or 

mental states. 
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The type of vocalisation, recording context and mental state were all annotated with the 

speech analysis tool Praat (Boersma & Weenink, 2019) by the first author. A randomly selected 

sample of the files was independently annotated by the second author to estimate agreement in 

the type of vocalisations that the cats produced. Results showed varying degrees of agreement 

between the two labellers with kappa values ranging from 0.43 to 0.97 with an average of 0.70. 

The most common human-directed vocalisation in our recording collection was the 

meow, defined as a voiced sound generally produced with an opening-closing mouth and 

containing a combination of two or more vowel sounds (e.g. [eo] or [iau]) with an occasional 

initial [m] or [w] (after Schötz, 2018). A total of 780 meows produced by 40 cats (22 females 

and 18 males, aged 1–12;6 years) were selected for acoustic analysis in this study. For all tokens, 

measures of f0 (maximum, minimum, mean and standard deviation (sd)) as well as duration were 

obtained. Additionally, F0 contours were generated using Praat Pitch Objects and manually 

corrected when necessary. To facilitate between-cat comparison, the contours were normalised 

by setting the minimum f0 for every meow to 0 semitones (st). Mean contours were obtained for 

each context and mental state by averaging f0 measured at 100 evenly distributed points in each 

meow. Differences between meows produced in different contexts and mental states were 

compared through visual inspection of the mean f0 contours as described below. Figure 1 shows 

an example of individual f0 contours and the corresponding mean f0 contour for the context play.  
 

 

Figure 1.: Individual and average f0 contours for the context play. 

 

Results 
 

Duration and f0 

Table 1 shows mean acoustic values in the different contexts and mental states. Differences 

between contexts and mental states were analysed for f0 mean, f0 sd, and duration (f0 minimum 

and maximum were not analysed as they highly correlated with f0 mean, and f0 range was not 

analysed as it highly correlated with f0 sd). The analysis was done in two steps. First, we 

performed mixed effects regression analyses to obtain an overall typical value for each cat across 

all contexts. Subsequently, these estimated values were subtracted from the values for each 

meow resulting in a positive number for a meow produced with a relatively high parameter value 

and a negative number for a meow with a relatively low parameter value. The resulting values 

were analysed using mixed effects regression with context and mental state as fixed effects and 

random intercepts for the different cats.  
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Table 1: Acoustic measurements (mean values). 

    duration  f0 (Hz) 

Context  n   (ms)  min  max  mean  range  sd 

door  75  754  601  712  661  111  30 

food  341  728  501  641  581  140  38 

greeting  61  670  395  542  484  148  44 

lifting  20  724  575  720  654  145  39 

play  27  561  318  444  393  124  36 

transport box  165  932  484  617  546  133  33 

Mental state               

attention  487  719  478  618  559  140  40 

content  52  545  414  551  495  137  40 

discontent  150  843  493  609  554  117  29 

stressed  78  912  520  671  579  151  39 
 

For contexts, we found that meows produced in food contexts were characterized by relatively 

high mean f0 (EST = 13.914, SE = 4.863, t = 2.861, p = 0.006) and short duration (EST = –

31.94, SE = 13.27, t = –2.407, p = 0.023). On the contrary, meows produced by cats in a 

transport box were characterized by low mean f0 (EST = –26.988, SE = 6.846, t = –3.942, p = 

0.000) and long duration (EST = 71.84, SE = 19.11, t = 3.759, p = 0.001). Meows produced in 

door contexts were relatively high in mean f0 (EST = 20.105, SE = 9.833, t = 2.045, p = 0.044), 

and meows produced in play contexts were characterized by low f0 variability (EST = –9.248, 

SE = 4.134, t = –2.237, p = 0.026). The remaining effects were all not significant. 

 For mental states, meows produced by stressed cats showed low average f0 (EST = –

29.329, SE = 8.080, t = –3.630, p = 0.000), and long durations (EST = 99.727, SE = 27.307, t = 

3.652, p = 0.000). Finally, meows produced by discontent cats were (marginally) significantly 

lower in f0 variability (EST = –3.475, SE = 1.777, t = –1.956, p = 0.051). All remaining effects 

were not significant. 
 

F0 contours 

Figure 2 shows mean f0 contours for the six contexts and the four mental states. The f0 contours 

for the meows in the positive (affiliative) contexts door, greeting, food, play and lifting all 

display rising patterns — the clearest can be seen in greeting — sometimes combined with a 

later fall. In contrast, the average contour produced by cats in a transport box is falling.  

Similarly, the f0 contours for the positive mental states attention and content are rising, while 

those produced by cats who were discontent or stressed display falling patterns 

 

Discussion and future studies 

The results from this study suggest that cat vocalisations are influenced by the context in which 

they were recorded or the mental state of the cat. We found effects on average f0, f0 variation, 

duration and on the melody (f0 contours). Roughly summarized, we observed that meows 

produced in positive contexts (by cats with a positive mental state) were high in pitch, short in 

duration and had a rising melody, while those produced in negative contexts (by cats with a 
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negative mental state) were low in pitch, long in duration and had a falling melody. It should be 

noted that some contexts contained meows by very few cats, e.g. play (2 cats) and lifting (4 cats). 

In future studies a larger number of cats will be analysed in each context and mental state. 
 

 
Figure 2. Mean f0 contours of meows from six contexts and four mental states (st: semitones). 
 

 A possible explanation of our findings is that cats use biological codes like the frequency 

code to vary the meaning of their vocalisations. Whether this is innate or a learned behaviour 

used mainly with humans is still unclear. We will investigate this in a future study by comparing 

human–directed and cat–directed vocalisations. 

In order to understand the exact mechanism behind the paralinguistic variation in acoustic 

characteristics of meows we will need to explore the data further and include measures of 

intensity and voice quality. Other factors that potentially influence the acoustics of cat 

vocalisations need to be taken into consideration. Possible candidates are sex, age, weight, breed 

and level of emotional arousal. Environmental factors, such as the number of cats in a household, 

may also play a role.  

 Whether or not variation in f0 and duration can be used to assess the mental or emotional 

well-being of cats remains to be tested. Rising patterns, in that case, are likely to indicate 

contentment, while falling patterns signal stress or discontentment. Additionally, meows were far 

from the only type of vocalisation in our collection, which also included trills, growls, hisses, 
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howls, snarls, purrs or chirps, and also combinations of two vocalisation types. Our next step in 

trying to chart the vocal system of the cat will be to subject these other vocalisation types to 

similar acoustic analyses to see whether we find effects of context and mental state there as well. 
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Abstract 
Background. In animal reproductive contexts, calling behaviour is mostly performed by males 

but in species in which females call, it is not known how vocal interaction occurs between sexes, 

particularly when sexual dimorphism in signals is low, as in cases in which call repertoire is 

identical but acoustic properties differ. In Darwin’s frog (Rhinoderma darwinii), a species in 

which males brood larvae inside their vocal sacs, females have higher dominant frequency and 

shorter calls and notes than males. Since in this species males persist calling after getting 

pregnant with larvae, different vocal interaction patterns are expected to occur among animals 

having dissimilar reproductive status.  

Methodology. To explore the mechanisms underlying vocal recognition among the different 

sexual status of R. darwinii, we recorded natural duets between non-pregnant males (NPM), 

pregnant males (PM) and females (F) and evaluated their evoked vocal response to natural 

playback stimuli of each sexual status from November to February 2015-2016 in Chiloé island, 

Chile. Call rate, phase angles, sound pressure level (SPL), number of overlapping calls and delay 

of overlapping calls were measured to determine differential responses between natural duets and 

in response to stimuli consisting of natural calls of individuals of different sexual status.  

Results. Spontaneous duet interactions occurred mainly between males and no clear differences 

between duets were detected. In playbacks, call ratios in response to calls of different sexual 

status were similar. Females decreased their SPL in response to F calls, while F and PM had 

longer call delays and lower call overlaps between each other. Major differences were observed 
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in call overlap, as the occurrence of this phenomenon was larger in playback experiments than 

during natural duets. The number of calls overlapped during natural duets was fewer (10.9 %) 

than during playback experiments (36.8 %). 

Conclusions. Our results suggest that in R. darwinii, PM and F signalize their sexual status by 

decreasing their call overlap and that NPM respond indistinctly to the other sexual status. In 

general, these differences in selective call overlap between Darwin's frogs arise as a novel 

mechanism for signal recognition between animal vocal interactions. 

 

Introduction 

The display of sexual signals has been mostly considered an exclusive feature of males (Price 

2015), however, growing evidence has shown that females can display sexual signals in various 

taxa (e.g. Serrano and Penna 2018), questioning their exclusive role as mediators of female choice 

and competition between males (e.g. Tobias et al., 2012). In addition, the study of duets and 

choruses formed by males and females may contribute new explanations about the role of signal 

exchanges in social and sexual processes (e.g. Janik and Slater 1998; Cui et al. 2010; Fishbein et 

al. 2018). In this regard, a largely unexplored issue in animal communication is how the timing of 

acoustic signals involved in recognition of conspecifics contribute to group cohesion in complex 

societies (Sheehan and Bergman 2016). 

Darwin's male frogs brood in their vocal sac larvae collected from eggs laid by females 

and fertilized by males (Goicoechea et al. 1986). In the field, Darwin’s frogs usually call isolated, 

in pairs or in small groups on moss mounds on undergrowth in temperate forest environments 

(Crump 2002). However, the occurrence of sexual and social interactions within and between 

sexes in Darwin’s frogs have not yet been determined. Recently advertisement call of this species 

has been shown to possess a sexual dimorphism related to body size differences between males 

and females but lacks clear differentiation between males with different pregnancy status (Serrano 

2019). The aim of the current study is to understand the role of vocal signalling for sexual 

recognition in a social environment conformed by males and females. It also expects shed light to 

understand the role of vocal interaction in a social environment conformed by male individuals 

with distinct sexual status. In this study we evaluate the hypothesis that Darwin’s frogs recognize 

their sexual identity by means of their calls, by recording natural vocal interactions between 

individuals of different sexual status and conducting evoked vocal response (EVR) experiments 

with stimuli representing the diverse sexual status.  

 

Materials & Methods 
We describe patterns of vocal interactions in a social environment conformed by pregnant males 

PM), non-pregnant males (NPM) and females (F), recording natural duets between animals 

having these three status during the reproductive season lasting five months (October 2015 to 

February 2016) in a population located on the Island of Chiloé, Chile (43° 21´ S; 74° 6´ W). In 

addition, we evaluated EVR to playbacks of natural calls of individuals of the three sexual status. 
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Duet recordings 

Vocalizations of subjects calling in duets were recorded with a digital recorder (Tascam DR-100) at a 

sampling rate of 44.1 kHz and 16-bit resolution and two directional microphones (Sennheiser ME-66) 

plugged to each recording channel. The distance separating the two subjects intervening in the duet was 

measured and sound pressure level (SPL re 20 µPa, C frequency weighting and fast time weighting) of 

calls of one individual conforming the duet was recorded placing a sound level meter microphone (Extech 

407780) adjacent to the tip of the directional microphone. Latency (registered as phase angle of call onsets 

between the calls of the two individuals; Klump and Gerhardt 1992), number of call overlaps and delay 

between the onset of overlapping calls between interacting subjects were measured. To discard that call 

overlap was occurring by chance between pairs of individuals composing a duet, number of overlaps and 

overlap delay between duets was compared using generalized linear models (GLM). 

 

Playback experiments 

Call bouts of playback stimuli were composed of 10 natural calls of individuals of the three sexual status 

having a high signal to noise ratio. The amplitude of call bouts was standardized at 64 dB SPL at the 

position of the subjects and time intervals between successive calls within a call bout were generated with 

random intervals of silence lasting 5 – 60 s. These values approximate those occurring in natural 

interactions between individuals of Darwin’s frog. Following this procedure, bouts of calls having 

different call rates and lasting 138 – 399 s resulted. This randomization in call timing allowed to evaluate 

the temporal relationship of the EVR to the stimuli, independent of potential rythmic calling behaviour 

based on an internal oscillator (Zelick and Narins 1985). Three-minute silent intervals spaced call bouts of 

the different stimuli and the order of presentation of call bouts of each sexual status was randomized. 

Stimuli were presented with a Samsung J1 WAV player connected via Bluetooth to a portable loudspeaker 

(i.Sound 5464). Spontaneous vocal activity of the experimental subjects was recorded and thereafter 

playbacks of calls of the three sexual status were presented sequentially through a loudspeaker placed on 

moss vegetation at 1 m and at an angle of about 90 degrees relative to the focal subject. Upon completion 

of each playback experiment, identity of focal individuals was registered.  

Responses to natural stimuli were analyzed measuring call rate, latency, SPL and number of overlaps of 

response calls with the stimuli as for duets. Call rate and SPL were computed for periods of silence and 

stimuli presentation, while latency and number of overlaps were measured only for stimuli presentations. 

GLM, ANOVA and post-hoc tests were used to compare responses to stimuli of the three sexual status.  

 

Results and Discussion 
Duet recordings 

Thirteen interactions were recorded between individuals belonging to the three sexual status: 

between NPM (N= 5), PM (N= 3), NPM and F (N = 4), and NPM and PM (N= 1). SPLs of the 

calls were not affected by the distance from the focal individual at which this variable was 

measured (range= 18 to 68 cm), as no significant correlation between this amplitude measure and 

recording distance occurred (n= 18; r= -0.13; df= 16; p= 0.612). No clear pattern was observed 

between the different kinds of duets regarding call rates, phase angles and SPL. Ratios between 

overlapping relative to non-overlapping calls were different from chance in duets composed by 

NPM, by NPM and F, and by PM (Table 1). As NPM was the only sexual status observed 

interacting with the two other sexual status, its responses to the three sexual status were 
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compared, showing that calls of this sexual status overlapped at an earlier time with F than with 

both types of males (ANOVA test, Chi2= 6.972; p <0.05; Fig. 1).  

 

Table 1. Percentage of overlapping calls in vocal interactions between non-pregnant males (NPM), 

pregnant males (PM) and females (F) of Darwin’s frog in natural duets and with calls of these three sexual 

status in playback experiments. Significant differences between the numbers of overlapping and non-

overlapping calls: *= p<0.05; **= p<0.01; nr= duets not recorded. 

Interaction 
% of overlapping calls between sexual status 

Focal individual NPM NPM NPM PM PM PM F F F 

Preceding caller or stimuli NPM PM F NPM PM F NPM PM F 

Natural duets 11.4** 16.3 12.3** 3.7* 10.6** nr 22 0 nr 

Playback experiments  29.8 48.8 42.1 42.1 36.4 5* 53.3 39.5 33.9 

 
Fig. 1. Delays between the onsets of overlapping calls for duets between non-pregnant males in response 

to non-pregnant males (NPM), pregnant males (PM) and females (F). Different low-case letters (a, b) 

indicate significant differences in post-hoc analyses (Tukey tests, p <0.05). 

 

Playback experiments 

Thirty-two individuals were stimulated with natural calls, 14 of which were NPM, 12 PM 

and six F. Call ratios in response to calls of different sexes were similar. However, F decreased 

their SPL in response to F calls relative to the initial silent period (GLM test, t=3.136; p<0.01; 

Fig. 2A) and had longer latency to PM relative F and NPM stimuli (GLM test, t= -2.573; p< 

0.05; Fig. 2B), while PM had lower number of overlapping calls to F relative to NPM and PM 

(GLM test, z= -1.691; p<0.05; Fig. 2C). 

The occurrence of call overlaps was larger in playback experiments relative to duet 

interactions (GLM test, z= 8.11; p< 0.001; Table 1) and overlap delay in response to all stimuli 

differed between sexual status, as F responded with a shorter overlap delay to all the stimuli 

combined relative to both types of males (ANOVA test, Chi2= 7.107; p< 0.05; Fig. 3). Such short 
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overlap delay of F during playback constrasts with the lower overlap delay observed also in F 

duettings (Fig. 1; see in Table 1 that F were observed overlapping calls with NPM only). 

 
Fig. 2. Sound pressure level (A) and phase angle (B) in evoked calls of females, and number of overlaps 

(C) in evoked calls of pregnant males in response to natural stimuli of the three sexual status. Stimuli 

abbreviations: NPM: non-pregnant males, PM: pregnant males, F: females. S1, S2, S3 and S4: silent 

intervals between stimuli presentations. Asterisks indicate significant differences in post-hoc analyses 

relative to S1 in A, and between stimuli in B and C (Tukey tests, *: p<0.05, **: P<0.01) 

 
Fig. 3. Overlap delays observed for non-pregnant males (NPM), pregnant males (PM) and females (F) in 

response to playbacks of all natural stimuli combined. Different low-case letters (a, b) indicate significant 

differences in post-hoc analyses (Tukey test, p <0.05). 

 

Our results suggest that in Darwin’s frogs signal recognition is not evinced in gross 

measures of vocal activity such as call rate like it occurs in other species (e.g. Cui et al. 2010; 

Fishbein et al. 2018). However, subtle differences in call overlap apparently indicate dissimilar 

readiness to interact vocally between individuals of different sexual status. PM and F of R. 

darwinii are relatively selective in their modes of synchronization with calls of different sexual 

status and NPM interact similarly with all the sexual status, a strategy likely to favour spatial 

tolerance of potential breeding partners. These differences in selectivity in call overlap between 
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duetting pairs may contribute a novel mechanism of sexual recognition that could be relevant for 

acoustic interactions among other organisms and artificial devices. 
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Abstract 
Understanding animal behaviour through psychophysical experimentation is often limited by 

insufficiently realistic stimulus representation. Important physical dimensions of signals and 

cues, especially those that are outside the spectrum of human perception, can be difficult to 

standardize and control separately with currently available recording and displaying techniques 

(e.g. video displays). Accurate stimulus control is in particular important when studying 

multimodal signals, as spatial and temporal alignment between stimuli is often crucial. 

Especially for audiovisual presentations, some of these limitations can be circumvented by the 

employment of animal robots that are superior to video presentations in all situations requiring 

realistic 3D presentations to animals. Here we report the development of a robotic zebra finch, 

called RoboFinch, and how it can be used to study vocal learning in a songbird, the zebra finch. 

 

 

Introduction 
The use of stationary and animated, robotic animal models knows a long tradition. Such models 

have been used in contexts as diverse as e.g. mate attraction signalling, predator-prey 

interactions or cooperation to investigate which stimulus properties trigger animals’ 

reactions1,2,3. Advances in technology involving new materials, small-sized actuators, 3D 

printing techniques and more computational power have greatly increased the possibilities for 

a new generation of even more realistic robotic animal models4, which can take the study of 

animal communication signals to the next level, especially in the context of multimodal 

signalling. This form of signalling where signals in one modality are either facultatively or 

obligatorily accompanied by signalling in one or more additional modalities, is widespread in 

animals especially in the context of mate attraction: Birds sing and dance, mammals show 

visual display, acoustic and chemical signals, many insects combine acoustic, vibratory and 

chemical signalling5. However, these signals are usually studied in one modality only, often 

owing to the technical problems involved in controlling more than one modality during 

stimulus presentations. Robotic models allow multimodal signal components to be controlled 

independently. This allows to expand the stimulus range and to produce artificial stimulus 

combinations testing receivers’ reaction to different combinations of signal components. 

Robotic applications have already helped to understand multimodal stimulus processing in the 
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context of territory defence or sexual signalling (e.g. in some frog and bird species 6,4,7) but 

could also open a research window into the development of the perception of multimodal 

signals. Here we outline the progress in designing a robotic bird, looking and singing like a 

songbird, the zebra finch Taeniopygia guttata. This species is an important model to study the 

behavioural and neurobiological aspects of vocal learning. A robotic zebra finch would allow 

studying the potential role of multimodal cues such as beak movements in vocal learning. To 

enable such studies, our goal was to create a realistic moving 3D-model of a singing bird 

showing the fast and sound-specific beak movements accompanying male song. 

 

 
Development of the RoboFinch 
To develop the basic form of the RoboFinch, we 3D scanned a taxidermic model of a zebra 

finch with a handheld 3D scanner (Eva, Artec3D, Luxembourg, Luxembourg). The beak was 

scanned with high resolution from a prepared skull (ATOS 5X, gom, Braunschweig, Germany, 

Fig. 1 A, B). These scans were combined in the program Catia V5R20 (Dassault Systèmes), 

where we also implemented the inner mechanics (Fig. 1 C). We printed the RoboFinch with 

stereolithography 3D printing (Form 2, Formlabs, Somerville, Massachusetts, US), which uses 

a laser to cure solid isotropic parts from a liquid photopolymer resin (Grey Pro, Formlabs 

Resin). The movement of the head and beak was controlled by coils we got from dismantling 

DigiBirds (Silverlit Toys Manufactory, Hongkong, China). The advantage of using those coils 

is that they are cost-effective, small and allow fast movements up to 100 Hz. The coils were 

controlled via a custom build controller board. All the movements and the sound were 

controlled via a data acquisition card (Measurement Computing USB-3101), which was 

connected to a small desktop PC (Intel NUC i5). All movements, sound and the schedule of 

the stimulus presentation was controlled by a custom made LabView (National Instruments) 

Program. We painted the 3D printed models by hand with mixes of Revell colours (Revell, 

Bünde, Germany), which we tried to closely fit to the colours of the plumage of live zebra 

finches. We measured the colour spectra of the RoboFinch and live males (n = 6) with a 

spectrometer (Flame, Ocean Optics, Largo, Florida, US). To create movement files, we did  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 3D Models of the RoboFinch. High resolution scan of (A) the upper and (B) the  
lower beak. (C) Catia Model of the RoboFinch showing the inner mechanics 
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high-speed video recordings (120fps) of singing male finches and deduced their head and beak 

movements with tracker software and played the recorded movements on the robot. The 

corresponding sound was played via a loudspeaker placed next to the robot.  

 

 
Application of the RoboFinch in a tutoring situation 
We tested the acceptance of the robots with two groups of young zebra finches, from 45-75 

post-hatching, each group consisting of one male and one female. The setup consisted of a big 

cage with a black wall on one side. The black wall had a mesh window (20 x 15 cm), the robot 

was placed directly behind this window and the birds inside the cage could sit on a perch 

directly at that window. The birds were accustomed to the non-moving robot model for about 

12 hours (afternoon and night) and then in the following morning (8 am) the robot started 

moving for the first time. The robot was programmed to move 6 times a day for half an hour 

displaying head and beak movements associated with short calls and song. We observed the 

birds with webcams (10fps), recorded their behavior and exemplarily analyzed sequences of 

video frames (600 greyscale frames, 1min) before and after the robot started moving. We did 

that for two sessions per day over the 6 initial days. As a measure of movement we used a 

frame differencing method and calculated the mean difference between adjacent frames (see  

Figure 2). Before the robot started moving, the young birds moved preferentially in the 

horizontal direction between the upper perches (the two upper images in Figure 2) indicating 

that the birds were not particularly interested in the robot when it wasn’t moving and singing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Images of the experimental cages of the two experimental groups of young birds 
summarising their movements in the cage with frame differencing. We plotted the frame 
differences in a colour gradation, the darker the red, the stronger were the cumulative pixel 
differences of adjacent frames and the stronger the movement. Each of the four plots is based 
on 12 events (2 tutor sessions on each of the 6 first exposure days) and for each event we 
analysed 600 frames (60s, 10fps). The images above are based on sequences right before 
the robot moved and vocalized, below directly after the robot started moving and vocalizung. 
Note that the movement of the robot is also visible in the lower images as dark dots. 
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As soon as the robot started moving and vocalizing however, the birds showed more interest 

and were approaching the robot as can be seen by the green to dark red pixels closer to the 

robot (Fig. 2, lower images, right end of the cage). Throughout the song tutoring, during the 

sensitive phase for song learning, the robot remained placed outside the cage, but at day 74 and 

75 we also tested the acceptance of the robot in the cage and noticed the birds interacting with 

it, in particular throughout the phases when it was moving and singing (see Fig. 3). 

 

Conclusion 

Our work builds upon and adds to previous work suggesting that robotic models help to 

uncover the role of visual cues in song learning in zebra finches8. At least one behavioural 

experiment with zebra finches and a non-moving robot showed that the birds vocally interact 

with this model9. Moreover, plastic models are already used as tutors in zebra finch song 

learning experiments10. Our preliminary data demonstrates that our RoboFinch is accepted by 

young zebra finches nearly instantaneously and that they also interact with it. These 

observations suggest that the RoboFinch could successfully be used for song tutoring 

experiments. As we now are able to control visual and acoustic stimuli independently and find 

out how the combination of these can influence vocal learning, our experiments could help to 

uncover general principles of multimodal sensory integration in animal communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Young zebra finches interacting with the RoboFinch inside the cage. 
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Abstract 

Precision Livestock Farming (PLF) is a field that seeks to optimise the output product of an animal 

by using advanced technologies, such as robots, to monitor individual animals. This means that 

robots are becoming more common on farms. This presents a unique opportunity for researchers 

to detect vocalisations between animals and act upon them accordingly. Animal welfare is a field 

that seeks to bring about the highest possible quality of life for an animal. By using robots to 

monitor vocal interactions between animals, we can glean unique insight into animal lives, and 

thus their needs. To this end, we present a framework that describes how a robot can detect 

domestic chick (Gallus gallus) vocalisations, classify them, and then carry out different actions 

depending on the vocalisations. In the future we will deploy these robots into laboratory and 

commercial farming settings to verify their effectiveness in a production environment.   

 

Introduction 

While Vocal Interaction in-and-between Humans And Robots (VIHAR) is in its infancy, 

discussion regarding farm animals, their welfare, and their relationship to the field have been only 

mentioned in passing (Moore et al., 2016; Morovitz et al., 2017). There is a need to address this 

issue, as vocalisations in-and-between humans, animals, and robots are highly present in animal 

welfare (Manteuffel et al., 2004). Animal welfare is a field that seeks to bring about the highest 

possible quality of life for an animal. However, there is some disagreement on the best possible 
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way to do this, mainly due to the different perceptions of what constitutes good animal welfare 

across the globe. To date, the most commonly agreed on aspect of animal welfare is the ‘Five 

Freedoms’. These ensure an animal’s freedom from hunger and thirst; discomfort; pain, injury and 

disease; fear and distress; and freedom to express normal behaviour. Some researchers also argue 

that we must look beyond the five freedoms in order to address all animal needs (Mellor, 2016).  

 

Precision Livestock Farming (PLF) is a field that seeks to optimise the output product of an animal 

by using advanced technologies to monitor individual animals (Banhazi et al., 2012). It is a multi-

disciplinary field, with engineers, veterinarians, and animal scientists collaborating together. 

Robots are already being integrated into the field of PLF, with cow milking machines 

automatically monitoring the levels of milk being taken from a cow (Houstiou et al., 2017). Robots 

are already being investigated in regard to how they may interact with poultry, using methods such 

as beamforming to identify the position and acoustic activity of chicks (Gribovskiy et al., 2010; 

Gribovskiy & Mondada, 2008, 2010). While it is possible to simply install microphones into 

animal housing, robots are useful as they are free to move around the housing unrestricted. 

Furthermore, robots do not require any specialist installation. This is important, as the farmer may 

not be able to use their barn while waiting for the system to be installed.  By using robots to monitor 

vocal interactions between animals, we can glean unique insight into animal lives. Given the risks 

associated with working on farms (Danuser et al., 2001), it is likely that we will see more and more 

robots in commercial farming to carry out tasks previously done by humans. To this end, we 

present a framework that allows a robot to detect domestic chick (Gallus gallus) vocalisations, 

classify them, and then carry out different actions depending on the vocalisations.  

 

The framework  

Domestic chickens have a repertoire and their vocalisations are associated with specific behaviours 

(Collias & Joos, 1953). Some vocalisations are associated with distress (Sufka et al., 2006), 

notifying other members of the flock about the presence of food (Evans & Evans, 1999; Evans & 

Marler, 1994), or alerting the other members of the flock to aerial and ground predators (Evans et 

al., 1993; Kokolakis et al., 2010). While this repertoire is generally discreet, it is worth noting that 

the fundamental frequency of the call will decrease as the animals grow larger (Fontana et al., 
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2015). The acoustic characteristics of events known as ‘peckouts’, where one member of the flock 

is attacked and killed by all others, have also been identified (Bright, 2008).   

 

We propose a system where a robot can detect and classify these calls and act accordingly. To 

achieve this system, we are building a database to describe the overall repertoire of chicks. As this 

project is still in its infancy, it is not possible to specify which type of feature extraction methods 

and classifiers are best suited to the task at hand. However, methods in ecology show promise for 

identifying what may work best (Mcloughlin et al., 2019), and methods are already being deployed 

in order to detect disease in poultry houses (Carpentiera et al., 2019). Depending on the output of 

the classifier, we can notify a robot on how to act according to the type of vocalisations it hears. 

The robot will be equipped with a microphone that can record chick sounds. After recording a 

sound, an onset detection function (Dixon, 2006) can be applied to detect the presence of a chick 

call in the recording. Following this, feature extraction can be applied before being passed on to 

the pre-trained classifier. Depending on the type of vocalisation that is produced, the robot can act 

accordingly. This process is summarized in Figure 1. For example, if it detected a peckout, it could 

move towards the animals and try and prevent the other members of the flock from killing the 

target of the peckout. It could also be used to identify the needs of the animals. For example, a lack 

of food calls in a recording may indicate that the animals may need food, and the robot can release 

food in response.    

 

Figure 1: This shows the overall structure of the system. i) the chick produces a sound; ii) a robot 

equipped with a microphone records this sound; iii) Onset detection is used to identify where the 

sound occurred in the recording; iv) audio features are extracted from the recording; v) the 

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019

48



features are then classified by a pre-trained classifier; vi) the robot carries out a specific action 

depending on how the sound is classified.  

 

Conclusion  

We have presented a framework for the development of classifying chick vocalisations via robots, 

and how they can be used to facilitate chick-robot interaction. Future work will involve lab trials 

of this system, before deploying the robots to farm trials to investigate their effectiveness in the 

field.  
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ABSTRACT

We explore computational strategies for matching human vocal imitations of birdsong to actual birdsong

recordings. We recorded human vocal imitations of birdsong and subsequently analysed these data

using three categories of audio features for matching imitations to original birdsong: spectral, temporal,

and spectrotemporal. These exploratory analyses suggest that spectral features can help distinguish

imitation strategies (e.g. whistling vs. singing) but are insufficient for distinguishing species. Similarly,

whereas temporal features are correlated between human imitations and natural birdsong, they are also

insufficient. Spectrotemporal features showed the greatest promise, in particular when used to extract

a representation of the pitch contour of birdsong and human imitations. This finding suggests a link

between the task of matching human imitations to birdsong to retrieval tasks in the music domain such

as query-by-humming and cover song retrieval; we borrow from such existing methodologies to outline

directions for future research.

INTRODUCTION

Humans often find bird sounds beautiful and interesting, and appear naturally inclined to imitate them. We

can find bird imitations in various cultural contexts such as music and birdwatching. These imitations span

the whole semiotic range from verbal description to verbatim copy, through mnemonics, onomatopoeia,

whistling, and instrumental decoy (Taylor, 2017; Pieplow, 2017).

Having a machine match human and bird sounds is a multimodal problem for which there is no

well-established computational framework. As of today, it is unclear whether this problem should be

approached as speech recognition, as birdsong classification, or as melody extraction. Furthermore,

variations within and between individual birds of a given species, as well as variations within and between

humans in their imitation strategies, raise challenging research questions.

Machine listening research on human imitations of birdsong may play an important role in the

emerging field of vocal interactivity in-and-between humans, animals, and robots (VIHAR). Indeed, this

topic naturally involves all three agents. In particular, it investigates the ability of birds to produce songs

which broadcast the acoustic signature of their species; the ability of humans to communicate the identity

with their own voice; and the ability of robots (here, digital audio recording devices) to unify birdsong

and human voice into a shared metric space of pairwise similarity. There is a growing body of machine

listening research on vocal imitation in other areas, such as musical instruments (Kapur et al., 2004;

Mehrabi et al., 2018), non-vocal sounds (Lemaitre et al., 2016a), basic auditory features (Lemaitre et al.,

2016b), and audio concepts (Cartwright and Pardo, 2015). However, it appears that research on vocal

imitations of non-human animal vocalizations is a novel area for VIHAR research.

The purpose of this paper is to explore the problem space of matching birdsong and imitations, in
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order to guide the design of systems for classification and retrieval. To this end, we begin by describing

our paradigm for collecting birdsong and human imitations. Then, we explore the data using various

methods for matching human vocal imitations to birdsong, by assessing measures in the spectral, temporal,

and spectrotemporal domains. We conclude by discussing potential approaches to this problem.

DATA COLLECTION

Imitations. Imitations were collected from a convenience sample of 17 participants (20-68 years; 4

female), including 10 with musical training and 11 with birding experience. Participants were seated

alone in a sound-attenuated room. They were presented with a birdsong recording, and then immediately

imitated what they heard. The sound of a clap marked the end of the birdsong excerpt and the beginning

of the recording period, which lasted 2 seconds longer than the given birdsong stimulus. We used a

MATLAB script to present stimuli and record imitations, using the internal speakers and microphone of

a Dell Latitude E6420 laptop. Participants pressed a key to proceed to the next recording. Before data

collection, there was a practice round with three birdsong recordings from outside the dataset. Participants

were told that they could imitate in any manner they would choose.

Stimuli. In order to obtain birdsong for stimuli, field recordings of birdsong were scraped from Xeno-

Canto.org, a citizen-science platform for sharing bird sounds (Vellinga and Planqué, 2015). The search

was limited to a) the ‘song’ vocalization type (as opposed to, e.g., ‘call’), b) a quality rating of A

or B (on a scale from A to E, A being highest), and c) 10 specific species: black-capped chickadee

(Poecile atricapillus), black-throated blue warbler (Setophaga caerulescens), common yellowthroat

(Geothlypis trichas), mourning dove (Zenaida macroura), northern cardinal (Cardinalis cardinalis),

prairie warbler (Setophaga discolor), red-eyed vireo (Vireo olivaceus), sora (Porzana carolina), veery

(Catharus fuscescens), and white-throated sparrow (Zonotrichia albicollis). In order to obtain ‘clean’

birdsong excerpts that are suitable for imitation, we used Sonic Visualizer (Cannam et al., 2010) to

manually annotate excerpts that a) had relatively high signal-to-noise ratio, b) contained song from the

target species, and c) lasted approximately 2-10 seconds. From each of the 10 species, we randomly

selected 10 recordings, and then selected the longest excerpt in each of those recordings to be used as

stimuli for eliciting imitations, thus amounting to 10× 10 = 100 stimuli per trial. Figure 1 shows a

spectrogram that illustrates the data acquisition process for imitations.

This dataset 1 and the code 2 for this project are will be available will be available online.

Figure 1. Spectrogram representation of one instance of data collection, comprising the playback of

one stimulus the playback of a clap to alert the subject; and the live acquisition of the human imitation.

DATA EXPLORATION

Spectral analysis and results
If the goal in this problem space is to match human imitations to the imitated birdsong, an intermediate

goal could be to match imitations to a species category. In previous research, Kapur et al. (2004) had

success classifying human imitations of instruments (in beat boxing) using the feature space of the

mel-frequency cepstral coefficients (MFCCs). In basic terms, MFCCs measure the overall shape of the

acoustic energy spectrum over a frequency scale that is perceptually uniform. This feature is commonly

used in speech recognition and music processing. The purpose of this section was to visually explore

the separability of species in the MFCC space in order to see whether such features might be useful for

species classification.

1https://birdvoximitation.weebly.com
2https://github.com/BirdVox/oudyk_vihar2019
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For each imitation, we located the two spectrogram frames with the highest energy and calculated

their 12 MFCCs of lowest quefrency. This resulted in a dataset of MFCC vectors which is exactly twice

as large as the total number of imitations. In order to visualize how well species cluster in the space of the

MFCCs, we used Principal Components Analysis (PCA) to reduce the dimensions from 12 to 2. PCA

groups together dimensions (MFCCs here) in linear combinations that are maximally correlated, while

minimizing the correlation between the groupings (i.e., principal components, PCs). PCA was performed

in python with Scikit-learn (Pedregosa et al., 2011) using a full singular value decomposition with the

standard LAPACK solver, with no rotation. The first two PCs respectively explained 30% and 24% of the

variance in the full 12-MFCC space.

In the space of these two PCs, species appear to overlap with each other (see Figure 2A), so this

feature does not look promising for species classification. The exception is the mourning dove (red dots),

whose imitations are less distributed. This species may have elicited less-varied imitations because its

song is slow, low-pitched, and memorable, and so may be easier to imitate (Pieplow, 2017).

We then explored what other information may be captured in this feature space. First, we visualized

participants (see Figure 2B); while participants do not have striking separability, they appear to have greater

separability than species. Next, in order to determine a simpler explanation for these two components,

we performed k-means clustering on the imitations. This is a data-driven, non-deterministic method of

grouping together data points based on their proximity to centroids (‘means’) in the given space (here, the

reduced MFCC space). K-means was performed using the “elkan” variation (using the triangle inequality

for efficiency) in Scikit-Learn with k=2 (i.e., 2 clusters), 10 runs with different centroids, a maximum of

200 iterations for a single run, and a tolerance of 0.0001 for inertia to declare convergence. The model

took 2 iterations to converge, and the solution is visualized in Figure 2C. Manual inspection of a sample

of data points within each cluster indicates that these clusters roughly correspond to imitation strategy:

86% of the sampled points in one cluster were whistled, and 83% in the other were not whistled.

Together, these results suggest that MFCCs are useful for identifying vocal strategy of birdsong

imitations. They did not prove useful for classifying the imitated species, but there may be more

information in a higher-dimensional representation of this space, with other settings for the analyses, or

in other spectral features. These results are in line with previous research on vocal imitations of basic

auditory features (Lemaitre et al., 2016b) and non-vocal sounds (Lemaitre et al., 2016a), showing that

vocal imitation goes beyond simple mimicry, as features are adapted to human vocal abilities. While this

spectral analysis does not appear to be useful for matching birdsong and imitations, clustering imitations

by strategy may be useful if different matching methods prove more useful for different strategies.

Figure 2. Results of the spectral analysis. The first two components from the PCA on the imitations’ 12

MFCCs, overlaid with A) species, B) participants, and C) the result of k-means clustering.

Temporal analysis and results

In other areas of vocal imitation, humans are fairly accurate at reproducing the rhythmic or relative

temporal structure of an audio sequence (Kapur et al., 2004). Therefore, we investigated whether a simple

temporal feature — the number of sound events — could be useful for matching imitations and birdsong.

In order to count sound events, we used the following method, as illustrated in Figure 3A and B:

1. We used per-channel energy normalization (Wang et al., 2017; Lostanlen et al., 2018) as a pre-

processing step to suppress background noise and emphasize foreground sounds, resulting in a

spectrogram-like representation of the sound (see code for PCEN parameter specification).

2. We calculated an approximate signal-to-noise ratio (SNR) for each time point by subtracting the

power of the minimum frequency bin from the maximum frequency bin, dividing by the median
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frequency bin, then median-smoothing the SNR over 50 ms, giving a SNR curve ranging from 0-1.

3. We performed vocal activity detection with an initial peak threshold on the SNR of 0.45, and then

followed the SNR curve in both directions to where it crossed the activity threshold of 0.2. These

two crossings were taken as the onset and offset time for each detected sound activity.

4. We counted the number of sound events as the number of segment onsets.

We then visualized the relationship between the number of sound events in the stimuli and their

imitations; as can be seen in Figure 3C, they roughly correspond. However, there was a tendency for

imitations to overshoot low stimulus counts and undershoot high stimulus counts. Further, there are more

outliers above zero than below zero, suggesting that participants more often drastically overshot than

undershot the true number of events in the stimulus.

The correspondence between the number of events in stimuli and their imitations indicates that the

number of sound events may be useful for matching imitations to the exact instance of birdsong being

imitated. These results also suggest that our vocal activity detection technique is performing above chance,

since there is high variance within modalities (bird vs. human), but still a positive correlation across

modalities. In the future, this technique could be assessed more effectively with manually-segmented

audio as the ground truth, and then more-confident conclusions could be drawn from the analysis. The

parameters used performed well based on visual inspection, but may be optimized in the future as well.

Figure 3. Illustration of temporal analysis. A) and B) illustrate the method of segmentation based on the

signal-to-noise ratio in a per-channel-energy-normalized mel-spectrogram (PCEN-SNR). C) shows the

relationship between stimulus and imitation event counts. The line and shaded area respectively denote

linear regression and their 95% confidence intervals. Counts are jittered up to 0.5 for visibility.

Spectrotemporal analysis and results

We then addressed the problem using spectrotemporal information in the form of pitch contour classes.

Contour classification has been used in musical analyses (Adams, 1976) and in music information retrieval

(Bittner et al., 2017, 2015; Kako et al., 2009; Salamon and Gómez, 2012; Panteli et al., 2017; Salamon

et al., 2013). Here, we borrow aspects of several methods, estimating the pitch contour using a polynomial

fitted to pitch time series (Bittner et al., 2017), classifying the pitch contour by quantizing the space

defined by polynomial features (Adams, 1976; Salamon et al., 2012), and then comparing the contours of

stimuli and imitations using the Levenshtein distance (e.g., Lemström and Ukkonen, 2000).

As noted in the section on the spectral analysis, participants used various imitation strategies. Some

strategies do not have a discernible pitch (e.g., imitations consisting of noisy or percussive vocalizations).

Thus, for this analysis, we decided to restrict the study to four bird species (mourning dove, sora, white-

throated sparrow, and northern cardinal) and 6 participants that produced the most whistling performances.

This brought the number of imitations down to 240.

In order to extract a pitch contour from each active segment, we applied a fundamental frequency

estimation algorithm. This algorithm consists in locating, for every frame in a per-channel energy

normalized (PCEN) spectrogram, the mel-frequency bin of highest magnitude. Based on preliminary

analyses, this simple frequency-domain procedure appeared more robust to octave errors than well-

established time-domain algorithms, such as YIN (De Cheveigné and Kawahara, 2002). Then, we fit a

second-degree polynomial of the form f = αt2 +β t + γ , as measured on a mel-frequency scale. Although
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Figure 4. The steps involved in classifying pitch contours.

the intercept γ varies monotonously with frequency transposition, the quadratic term α and the linear

term β are transposition-invariant. We can quantize the feature space of these terms into seven regions by

thresholding α and β (see Figure 4D). However, since the vertex of the curve may be located before or

after the actual curve, we also considered the location of the polynomial vertex relative to the beginning,

middle and the end of the recording (see Table 1 and Figure 4C and D). Each curve is labelled with a

3-letter string, where u stands for up, d for down, and f for flat (e.g., udd is up-down-down).

Contour Quadratic term α Linear term β Time location of

class vertex v = −β
2∗α

uuu −0.01 < α < 0.01 0.1 < β (no vertex)

0.01 < α 0.1 < β v < 0

α <−0.01 0.1 < β T < v

duu 0.01 < α 0.1 < β 0 < v < T
2

ddu 0.01 < α β <−0.1 T
2
< v < T

ddd −0.01 < α < 0.01 β <−0.1 (no vertex)

0.01 < α β <−0.1 T < v

α <−0.01 β <−0.1 v < 0

uud α <−0.01 0.1 < β T
2
< v < T

udd α <−0.01 β <−0.1 0 < v < T
2

f f f −0.01 < α < 0.01 −0.1 < β < 0.1 (no vertex)

Table 1. Definitions of pitch contour classes.

We compared the pitch contours for the im-

itations and birdsong using the Levenshtein dis-

tance between a stimulus and a) its correspond-

ing 6 imitations, b) 6 imitations of a similar

song from the same species, and c) 6 randomly-

chosen imitations from other species. If this

measure is useful for matching birdsong and

its imitations, then the Levenshtein distances

between these pairs should be a <= b < c. In

other words, the stimulus should be most simi-

lar to its imitations, then equally or less similar

to imitations of birdsong from the same species,

and least similar to a different species.

Results showed that a <= b < c was true

for 71% of the selected data. This proportion

rises to 79% if we only required the distance between stimulus and imitations of the same species to be

smaller than those between it and imitation of a different species (i.e., a < c and b < c). This indicates the

usefulness of pitch contours for matching birdsong and imitations. Future analyses target the participants

and species that did not primarily produce whistled sounds, as this analysis may be more effective for

imitations that are predominantly tonal.

CONCLUSION AND FUTURE DIRECTIONS

The purpose of this study was to explore spectral, temporal, and spectrotemporal methods for matching

birdsong and human imitations. The spectral space of the MFCCs was not sufficient to move beyond

classifying imitation strategy. The temporal analysis revealed that the number of events roughly corre-

sponds between imitations and original birdsong. However, the most promising results were found with

the subsequent spectrotemporal analysis, in which we used the melody contour to match imitations to

birdsong. Together, these results suggest that the problem of retrieval-by-imitation for birdsong is more

akin to a melody recognition problem than a speech recognition problem. This suggests that this problem

may be addressed using established methods in music information retrieval for query-by-imitation or

imitation classification, and future work will follow these research directions.
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Salamon, J. and Gómez, E. (2012). Melody extraction from polyphonic music signals using pitch contour

characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6):1759–1770.
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ABSTRACT

This report presents an open-source human-robot interaction system under development. Anyone with

access to a 3D printer and an internet shopping cart should be able to build this robot for well less than

the cost of a laptop computer. The system is meant to bridge the divide between closed-source children’s

toys types of robots, and the high-end expensive humanoid robots found in elite research laboratories.

The focus of this report is on the development of the robot’s software control system, especially in the

area of non-linguistic and multimodal interactional cues. Such a control system goes beyond linguistic

information transfer as the basis of communication. Visual cues, non-linguistic vocal gestures, and motor

control are important aspects of interaction that need to be incorporated. From this explicit foundation,

we consider some challenges faced and decisions made in the practical design of such a system.

INTRODUCTION

In the late 1990s and early 2000s, VoiceXML characterized the cutting edge of interactive speech

technology (Abbot, 2002). A user could make a telephone call to a menu-driven speech system to e.g.

find out the weather in a specific city, or to confirm airplane reservations. The machine would ask the

questions, and speech recognition was based on the best match of the caller’s reply with a menu of

valid responses. Much has changed since those days in terms of artificial speech technologies. Today a

person may ask questions to ‘voice assistants,’ such as Siri or Alexa, in a more open-ended manner to

retrieve information (Hoy, 2018). Yet much has also remained the same. Linguistic information transfer

is still generally the de facto goal of human-machine speech interaction. A more natural and efficient

communication interface will involve the integration of visual information, affective and emotional cues,

and forms of shared attention between the user and the machine. That is, linguistic information transfer

based on audio is but a mere portion of the challenge for the human-machine speech interface.

One reason that interactive speech technologies today still lag in multimodal integration may relate to

specialization pressures on engineers. Speech engineers tend to leave computer vision to the computer

vision community, and to leave motor control to the robotics engineers. Likewise, computer vision

and robotics engineers tend to treat speech as a black-box problem best left to speech engineers and

computational linguists. As a result, multimodal integration is generally left as an issue for the interaction

designer to solve. Furthermore, one reason that speech technologies are mostly still confined to linguistic

information transmission may be that this is the low-hanging fruit. It is attractive and comfortable and

routine to treat human communication as an elaboration of text processing. Yet, there is a demand to

go beyond the comfortable. For instance, an exciting frontier in developing intervention therapies for

children on the autism spectrum involves the use of humanoid robots (A.P. Costa, 2018). In short, the

humanoid robot intermediary for autism therapy should be able to visually direct attention, should be

able to perform and recognize communicative gestures, and should be able to convey [non-linguistic]

social cues. In light of all this, we propose that: 1) a human-robot communication control system’s design

should not assume linguistic information transfer as The primary (and somewhat solved) problem, 2) the

robot’s control design should induce collaborations between researchers in vocal interaction, vision, and

motor control, among others, and 3) such a robot’s software and hardware need to be open, easy, serious,

and affordable if the platform is to attract a community of developers to contribute to it.
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MATERIALS AND METHODS

This section introduces the open-source robot hardware system. Then the design approach to the software

is introduced. The software design entails some practical goals and constraints. One software design goal

is that once someone has assembled the robot, they should be able to quickly test the robot and program it

to do something interesting, without a steep learning curve. A second goal is that the control system’s

design should be flexible enough to address unforeseeable demands of users. The design should also

allow for developers to share their work with each other. In an effort to address these issues, we provide

something of a “browser - operating system” or interpreter that renders what we call “FluidScript” files.

A FluidScript file is an XML file that elaborates on the VoiceXML protocol. The Fluidscript design also

borrows from other protocols, such as Speech Synthesis Markup Language (https://www.w3.org/tr/speech-

synthesis11), Behavior Markup Language (H. Vilhjálmsson, 2012), and Perception Markup Language

(S. Scherer, 2012). The interpreter is developed for the Linux operating system (i.e. for Raspberry Pi), but

Windows and Apple versions could be made available on demand.

Hardware System
The open-source robot hardware is composed of 3D printed parts, hobby servo motors, two USB-based

cameras, standard audio based microphone(s) and loudspeaker, and a USB-based motor control system

(Arduino). Anyone with a 3D printer and access to internet shopping should be able to build this robot for

less than a few hundred dollars. The robot head’s size is about that of an adult person’s head size. The two

cameras are fitted as the robot’s eyes, actuated by a pan-tilt mechanism. A user may readily see where

the cameras are pointed – or where ‘the robot is looking.’ The robot’s eyecams each have lids and brows

for conveying visual affective cues, i.e. valence (brows) and arousal (lids). The loudspeaker for speech

and vocal sound production is placed at the back of a short tube, and two mechanical ‘lips’ are placed

at the front of the tube. As the lips move, the radiation characteristic of the resulting sound prompts

the listener to perceptually localize the sound to the robot’s vocal cavity. In total, the robot head has 12

separate degrees of freedom, including: (1) right eyecam pan, (2) left eyecam pan, (3) eyecams tilt, (4)

right eyecam lids, (5) left eyecam lids, (6) right eyecam brows, (7) left eyecam brows, (8) lips open-close,

(9) head rotate, (10) head tilt, (11) neck rotate, (12) neck tilt. The hardware is designed so that motors and

components are easily accessible, and so that parts may easily be replaced or customized, depending on

potential user needs. Figure 1 presents the robot head in four poses to illustrate the various degrees of

freedom. Development of the robot also includes an optional set of arms, though we focus on the robot’s

head here. Because the robot’s electronics use computer standards (USB webcams, standard computer

audio in-out, serial port for motor control), software for the robot can be designed from scratch by any

skilled developer or team. For example, some users may prefer to use ROS (https://www.ros.org). Here,

“form follows function.” The priority is to provide a platform that is affordable and easy to maintain for the

purpose of interaction research and software development. Though the robot may not look as realistic as

some other humanoid robots, a visual appearance that is indistinguishable from that of a real person does

not provide enough function to warrant the cost, in our humble opinion. See (http://www.fluidbase.com)

for videos and more information on this hardware system.

Figure 1. open source robot hardware system
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Building Behavior with ‘Fluidscript’
Next we consider the general design of a FluidScript file. Like with VoiceXML, the interpreter starts

with an initial script that contains global variables and boots the system. When the interpreter is started,

this ‘boot.fxml’ Fluidscript file is read to initialize the robot. A short example boot script might look

something like this:

01 <?xml version = "1.0"?>

02 <fluidscript version = "1.0", application = "boot.fxml"/>

03 <meta name = "author", content = "Michael Brady"/>

04 <meta name = "voice", content = "steve"/>

05 <form id = "boot">

06 <audio src="hello.wav"/>

07 <motors moveall = "rest"/>

08 <pause> 2.0 </pause>

09 <motors gesture = "cyclemotors.mpx"/>

10 <pause> 10.0 </pause>

11 <field name = "cond", type = "boolean">

12 <prompt video = "head.vgx", audio = "true", interrupt = "false">

13 Do my motors look to be working okay? <brows = "up"/>

14 </prompt>

15 <filled>

16 <if cond = "true">

17 <goto next = "greet.fxml"/>

18 </if>

19 <speak> Oh no. I will power off. </speak>

20 <goto next = "shutdown.fxml"/>

21 </filled>

22 </field>

23 </form>

24 </fluidscript>

Let us walk through this script. Lines 1 and 2 establish that this is an XML-based Fluidscript file

named ‘boot.fxml.’ Some example meta-information is then provided, such as the voice the robot will

speak with. Many types of meta-tags may be used here to specify global parameters and to initialize the

robot with some background behaviors when not processing scripts. One Line 5, the script then enters

into a ‘form.’ Forms are the building blocks of behavior for the robot. On Line 6, the robot says: “hello”

by playing a .wav file. The <motors/> tag is used for moving motors. On Line 7, the script specifies that

all motors should move to the ‘rest’ or start position (position where the robot should relax to when there

is no power to the motors). Line 8 makes the script pause for two seconds while the motors move. The

interpreter now has the motors supposed positions. On Line 9, the <motors/> tag is then used to play an

‘.mpx’ file. This ‘cycle.mpx’ file contains the commands for a predefined sequence of motor moves – to

test if the robot’s motors are powered and calibrated properly. The .mpx files are developed separately and

a library of .mpx files is provided with the interpreter, (new .mpx files may be created by advanced users).

From there, the robot prompts the user with the question: “Do my motors look to be working okay?”

When the <prompt/> tag is used, the field waits to be filled with a response. Here the robot is looking

for a boolean (yes-no or true-false) response. As specified in this specific <prompt/> tag example, the

response may come from both the visual system (using the program ‘head.vgx’ - computer vision that

works to detect an affirmative head nod and-or thumbs-up hand gesture) and the auditory system (a spoken

“yes” or “no,” “affirmative” or “negative,” from the default speech recognizer). If the response is ‘yes,’

the robot leaves the boot.fxml script and proceeds to run the specified next script, called ‘greet.fxml.’ If

the response is not ‘yes,’ the robot speaks an error message and powers off by running ‘shutdown.fxml.’

The user can then try to correct the motor problem and re-boot the system. Here we can begin to see

some dilemmas. What if the vision system detects a “thumb’s up” affirmative hand gesture, but the speech

system detects that the user said “no!” Perhaps in this case the solution is rather simple. However, how

might we integrate a local lip-reading vision program with a cloud-based speech recognition program?

Let’s take a look at a second Fluidscript file. Once the robot has booted, the interpreter may run local

Fluidscripts, or (eventually) it may run scripts that are hosted remotely on the World Wide Web. A local

script might be e.g. a home security monitoring system, a sassy chess opponent, or a script written by
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an autism therapist. A remote script may be an airplane reservation system or a telepresence script that

allows a remote user to become the ‘Wizard-of-Ozz’ controller of the robot. For now consider the local

script of a greet.fxml, involving computer vision for face recognition:

01 <?xml version = "1.0"?>

02 <fluidscript version = "1.0", application = "greet.fxml"/>

03 <meta name = "affect", content = "sleepy"/>

04 <form id = "detect">

05 <field name = "face", type = "boolean"/>

06 <prompt video = "detectFace.vgx", interrupt = "false"/>

07 <filled>

08 <if face = "true">

09 <speak><excited> Oh, hi there <blink/></excited></speak>

10 <meta name = "affect", content = "wakeful"/>

11 <goto next = "#recognize"/>

12 </if>

13 <speak><sad>

14 I don’t see anyone. I will keep looking.

15 </sad></speak>

16 <goto next = "#detect"/>

17 </filled>

18 </field>

19 </form>

20 <form id = "recognize">

21 <field name = "who", type = "modal"/>

22 <prompt video = "recognizeFace.vgx", interrupt = "false"/>

23 <filled>

24 <if who = "true">

25 <speak><excited>

26 It is good to see you <blink/> $who.name

27 </excited></speak>

28 <goto next = "#address($who.name)"/>

29 </if>

30 <speak><brows = "down"/> I don’t recognize you. </speak>

31 <goto next = "shutdown.fxml"/>

32 </filled>

33 </field>

34 </form>

35 </fluidscript>

This script starts off as before. Then on Line 3, the affect parameter of the robot is set to “sleepy.” The

robot will remain “sleepy” until this parameter is changed again. The script then enters a form with an id

of “detect,” where a field is initialized to look for a face. If the computer vision program “detectFace.vgx”

detects a face, the robot says “oh, hi there,” the global affect is set to “awake,” and control is passed to the

form “recognize,” (a script may contain multiple forms). If a face is not detected, the robot says: “I don’t

see anyone, let me keep looking,” and re-runs the “detect” form. Perhaps there is a hardware problem that

needs to be solved. The “recognize” form is similar to other forms we have now seen. It has a field called

“who” that needs to be filled. If the face is recognized, the vision program “recognizeFace.vgx” is run to

fill the field with a person’s name. Control then passes to a form called “address” (not included here), that

receives the name of the person recognized, where the robot may address the person with a greeting based

on stored memories of that person. For the sake of simplicity in this example, if the face is not recognized,

the robot is shut down. A better solution might be to ask the unrecognized person for their name, do some

error checking, and if it is a new person, ask for permission to add that person to the database.

Challenges for Development
Hopefully at this point the reader is able to imagine building some basic behaviors and robot interactions

using Fluidscript. Now let’s consider some issues. One issue is that the Fluidscript interpreter is built to

use external programs. Users write (and share) Fluidscript files, stand-alone computer vision programs,

stand-alone audio processing programs, and motor output sequences. A long discussion might go here
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about rationale and strategy. In short, the interpreter is mainly responsible for motor control. The

interpreter owns the serial port that controls the robot’s motors. However, the interpreter does not ‘own’

the USB cameras used by vision programs, nor does it ‘own’ the audio channels used by audio programs.

That is, the interpreter is merely a traffic controller that manages audio and video channel usage. This

allows developers to build and test audio and video programs independent of the interpreter.

With such a VoiceXML-derived control system, two difficulties with developing robot behaviors

present themselves: 1) behavioral interrupts, and 2) sensor sharing and integration. ‘Behavioral interrupts’

refers to when one script is running and another script needs to jump in and override the first script. An

example comes to mind from a preliminary study with the robot at a school for autistic children. When a

child quickly thrusts his hand in front of the robot’s eyecams, the robot might best react with an avoidance

maneuver and vocal sound. Or, when a child tickles the robot’s chin, a therapist might want the robot to

stop and e.g. giggle. Better yet, the robot might giggle while continuing with its previous behavior. How

to specify behavioral interrupts is a challenge for the rigid turn-taking nature of the Fluidscript protocol.

With the <prompt/> tag, the use of behavioral interrupts is anticipated (e.g. Line 22 of greet.fxml), but

how to specify interrupted and merged behaviors using Fluidscript is still in debate. ‘Sensor sharing and

integration’ relates to how to run one stand-alone program that needs to use the video cameras and-or

audio channels while another stand-alone program is using them. For instance, say a developer builds a

face expression recognition computer vision program where results should change the character of the

vocal output of an audio program (that has already launched). How might the vision program pass its

information to the audio program? Writing a single program that uses both audio and video is feasible,

but would e.g. lock out other programs from using the video camera(s) during speech production.

An important question for the vocal interaction community is: how might the Speech Synthesis

Markup Language (SSML) be modified to better address the multimodal demands of human-robot

communication? For instance, in marking up text for output from a speech synthesizer, a user may want

to control eyecam lids, eyecam brows, lips, and even hand gestures in synchrony with speech. Should this

motor control be based on behavior-generating parameters, or is it better to specify all of the details of

behavior through specific tags (or some combination of the two)? Another challenge is in how to “mark

up” speech when there is no linguistic message to be marked up? Grunts and laughs and snorts don’t fare

so well on most speech synthesizers. How might affect such as sarcasm, or dominance and submission be

encoded in a notational system? We seek feedback from the vocal interaction community on this.

DISCUSSION

This report has introduced a specific open-source platform for human-robot interaction under development.

For practical reasons and to provide a system that is accessible to non-expert users, the control system

is broken into two parts. Non-expert users may write Fluidscript files, as exemplified in this report, to

quickly develop robot behaviors. A library of computer vision and speech processing applications is

made available for this. Advanced users may then write custom stand-alone audio and computer vision

applications to run under Fluidscript flow-control. We are optimistic that a large number of such stand-

alone open-source programs may be contributed, and that the Fluidscript interpreter may eventually grow

into a full-fledged operating system. In the meantime, it is hoped that the vocal interaction community

(and other communities) may offer useful feedback in developing a robust Fluidscript or communication

protocol that will overcome the current rigid turn-taking paradigm. The robot is still in its beta testing

phase, and is not ready for the public. But it is generally available to researchers and developers. Please

contact the author if you are interested in contributing or in working with the robot.
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ABSTRACT

Traditionally, emotion recognition research has primarily used pictures and videos while audio test

materials have received less attention and are not always readily available. Particularly for testing vocal

emotion recognition in hearing-impaired listeners, the audio quality of assessment materials may be

crucial. Here, we present a vocal emotion recognition test with non-language specific pseudospeech

productions (based on Bänziger & Scherer, 2010) of multiple speakers expressing three core emotions

(happy, angry, and sad): the EmoHI test. Recorded with high sound quality, the test is suitable to use

with populations of children and adults with normal or impaired hearing, and across different languages.

In the present study, we obtained normative data for vocal emotion recognition development in normal-

hearing school-age (4-12 years) children using the EmoHI test. In addition, we tested Dutch and English

children to investigate cross-language effects. Our results show that children’s emotion recognition

accuracy scores improved significantly with age from the youngest group tested on (mean accuracy

4-6 years: 48.9%), but children’s performance did not reach adult-like values (mean accuracy adults:

94.1%) even for the oldest age group tested (mean accuracy 10-12 years: 81.1%). Furthermore, the

effect of age on children’s development did not differ across languages. The strong but slow development

in children’s ability to recognize vocal emotions emphasizes the role of auditory experience in forming

robust representations of vocal emotions. The wide range of age-related performances that are captured

and the lack of significant differences across the tested languages affirm the usability and versatility of

the EmoHI test.

INTRODUCTION

Children’s development of emotion recognition has been studied extensively using visual stimuli, such as

pictures or sketches of facial expressions, or audiovisual materials (e.g., Nowicki and Duke, 1994), and

particularly with clinical groups, such as autistic children (e.g., Harms et al., 2010). However, not much is

known about the development of vocal emotion recognition (Scherer, 1986). Children have been reported

to reliably recognize vocal emotions already from the age of 5 years on, but this ability continues to

develop to adult-like levels throughout childhood (Tonks et al., 2007; Sauter et al., 2013). Based on earlier

research on the development of voice perception (Mann et al., 1979; Nittrouer et al., 1993), children’s

performance may be lower compared to adults due to differences in their weighting of acoustic cues and a

lack of robust representations of auditory categories. For instance, Morton and Trehub (2001) showed

that, when acoustic cues and linguistic content contradict the emotion they convey, children mostly rely

on linguistic content to judge emotions, whereas adults mostly rely on affective prosody. In addition,

children and adults both perform better in facial than vocal emotion recognition tasks (Nowicki and Duke,

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019

63



1994). All of these observations combined indicate that the formation of robust representations for vocal

emotions is highly complex and possibly a long-lasting process even in typically developing children.

Research with hearing-impaired children has shown that they do not perform as well on vocal emotion

recognition compared to their normal-hearing peers (Dyck et al., 2004; Hopyan-Misakyan et al., 2009;

Nakata et al., 2012; Chatterjee et al., 2015). Hopyan-Misakyan et al. (2009) showed that children with

cochlear implants (CIs) performed as well as their normal-hearing peers on facial emotion recognition but

scored significantly lower on vocal emotion recognition. Facial emotion recognition seems to generally

develop faster than vocal emotion recognition (Nowicki and Duke, 1994), particularly in hearing-impaired

children (Hopyan-Misakyan et al., 2009), which may indicate that visual emotion cues are perceptually

more prominent or easier to categorize than vocal emotion cues. A higher reliance on visual emotion cues

as compensation for degraded auditory input, as emotion recognition in daily life is usually multimodal

for which visual emotion cues can often be sufficient, may lead to less robust representations of vocal

emotions. Furthermore, Nakata et al. (2012) found that children with CIs had difficulties primarily with

differentiating happy from angry vocal emotions. This difference may be related to a higher reliance

on differences in speaking rate to categorize vocal emotions, as this cue differentiates sad from happy

and angry vocal emotions but is similar for the latter two emotions. Therefore, hearing loss also seems

to influence the weighting of different acoustic cues, and hence likely also affects the formation of

representations of vocal emotions.

As most research on the development of emotion recognition has used visual materials such as pictures

or videos, good-quality audio materials are scarce. For normal-hearing listeners, the audio quality may

only have a small effect on performance, but for testing hearing-impaired populations it may be highly

important. Hence, we recorded high sound quality vocal emotion recognition test stimuli produced

by multiple speakers with three basic emotions (happy, angry, and sad) that are suitable to use with

hearing-impaired children and adults: the EmoHI test. We aimed to investigate how school-age children’s

ability to recognize vocal emotions develops with age and to obtain normative data for the EmoHI test for

future applications, for instance, with clinical populations. In addition, we tested children of two different

native languages, namely Dutch and English, to investigate potential cross-language effects.

METHODS

Participants

Fifty-eight Dutch children and 25 English children between the ages of 4 to 12 years, and 15 Dutch adults

and 15 English adults participated in the study. All participants were monolingual speakers of Dutch or

English and reported no hearing or language disorders. Normal hearing (hearing thresholds at 20 dB HL)

was screened with pure-tone audiometry at octave-frequencies between 500 and 4000 Hz. The study was

approved by local ethics committees of the participating institutions. A written informed consent form

was signed by the parents of children and adult participants before data collection.

Stimuli and Apparatus

We made recordings of six native Dutch speakers producing two non-language specific pseudospeech

sentences using three core emotions (happy, sad, and angry), and a neutral emotion (not used in the current

study). All speakers were native monolingual speakers of Dutch without any discernable accent and did

not have any speech, language, or hearing disorders. Speakers gave written informed consent for the

distribution and sharing of the recorded materials. To keep our stimuli relevant to emotion perception

literature, the pseudospeech sentences that we used, Koun se mina lod belam [k2un s@ mina: lOt be:lAm]

and Nekal ibam soud molen [ne:kAl ibAm s2ut mo:lEn], were taken from the Geneva Multimodal Emotion

Portrayal (GEMEP) Corpus by Bänziger and Scherer (2010). Speakers were instructed to produce the

sentences in a happy, sad, angry, or neutral manner using emotional scripts that were also used for the

GEMEP corpus stimuli (Scherer and Bänziger, 2010). The stimuli were recorded in an anechoic room at

a sampling rate of 44.1 kHz. We selected the productions which received the highest accuracy scores of

the four highest-rated speakers based on an online survey with Dutch and English adults. Table 1 shows

an overview of these four selected speakers’ demographic information and voice characteristics. The

neutral productions and the productions of the other two speakers were part of the online survey, and are

available with the stimulus set, but were not used in the current study to simplify the task for children.

Our final set of stimuli consisted of 36 experimental stimuli with three items (combinations of two times
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one sentence and one time the other sentence) per emotion and per speaker (3 items x 3 emotions x 4

speakers) and 4 practice stimuli with one item per speaker that were used for the training session.

Speaker Age Gender Height Average F0 F0 range

T2 36 F 1.68 m 302.23 Hz 200.71 - 437.38 Hz

T3 27 M 1.85 m 166.92 Hz 100.99 - 296.47 Hz

T5 25 F 1.63 m 282.89 Hz 199.49 - 429.38 Hz

T6 24 M 1.75 m 167.76 Hz 87.46 - 285.79 Hz

Table 1. Overview of the speakers’ demographic information and voice characteristics.

Procedure

Children were tested in a quiet room at their home, and adults were tested in a quiet testing room at

the two universities. The present experiment is part of a larger project (PICKA) on voice and speech

perception conducted by the UMCG for which data were collected from the same population of children

and adults in multiple experiments (Nagels et al., in review). The experiment started with a training

session consisting of 4 practice stimuli and was followed by the test session consisting of 36 experimental

stimuli. The total duration of the experiment was approximately 6 to 8 minutes. All items were presented

to participants in a randomized order.

The experiment was conducted on a laptop with a touchscreen using a child-friendly interface that

was developed in Matlab (Figure 1). The auditory stimuli were presented via Sennheiser HD 380 Pro

headphones and calibrated to a sound level of 65 dBA. In each trial, participants heard a stimulus and then

had to indicate which emotion was conveyed by clicking on one of three corresponding clowns on the

screen. Visual feedback on the accuracy of responses was provided to motivate participants. Participants

saw confetti falling down the screen after a correct response, and the parrot shaking its head after an

incorrect response. After every two trials, one of the clowns in the back went one step up the ladder until

the experiment was finished to keep children engaged and to give an indication of the progress of the

experiment.

Figure 1. The experimental interface of the EmoHI test.

Data analysis

Children’s accuracy scores were analyzed using the lme4 package (version 1.1.21, Bates et al., 2014)

in R. A mixed effects logistic regression model with a three-way interaction between language (Dutch

and English), emotion (happy, angry, and sad), and age in decimal years, and random intercepts per

participant and per item was computed to determine the effects of language, emotion, and age on

children’s ability to recognize vocal emotions. We used backward stepwise selection with ANOVA

Chi-Square tests to select the best fitting model, starting with the full factorial model, in lme4 syntax:

accuracy ∼ language · emotion ·age + (1|participant) + (1|item), and deleting one fixed factor at a

time based on its significance. In addition, we performed Dunnett’s tests on the Dutch and the English

data with accuracy as an outcome variable and age group as a predictor variable using the DescTools

package (version 0.99.25, Signorell et al., 2016) to investigate at what age Dutch and English children

showed adult-like performance.
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RESULTS AND DISCUSSION

Model comparison showed that the full model with random intercepts per participant and per item was

significantly better than the full model with only random intercepts per participant [χ2(1) = 393, p <

0.001] or only random intercepts per item [χ2(1) = 51.9, p < 0.001]. Backward stepwise selection showed

that the best fitting and most parsimonious model was the model with only a fixed effect of age, in lme4

syntax: accuracy ∼ age + (1|participant) + (1|item). This model did not significantly differ from

the full model [χ2(10) = 12.90, p = 0.23] or any of the other models while being the most parsimonious.

Figure 2 shows the data of individual participants and the median accuracy scores per age group for the

Dutch and English participants. Children’s ability to correctly recognize vocal emotions increased as a

function of age [z-value = 8.91, estimate = 0.30, SE = 0.034, p < 0.001]. We did not find any significant

effects of language or emotion on children’s accuracy scores. Finally, the results of the Dunnett’s tests

showed that the accuracy scores of Dutch children of all tested age groups differed from Dutch adults

[4-6 years difference = -0.47, p < 0.001; 6-8 years difference = -0.31, p < 0.001; 8-10 years difference =

-0.19, p < 0.001; 10-12 years difference = -0.15, p < 0.001], and the accuracy scores of English children

of all tested age groups differed from English adults [4-6 years difference = -0.43, p < 0.001; 6-8 years

difference = -0.27, p < 0.001; 8-10 years difference = -0.20, p < 0.001; 10-12 years difference = -0.12,

p < 0.01].

Figure 2. Accuracy scores of participants for emotion recognition per age group and per language

(Dutch in the left panel; English in the right panel). The dots show individual data points at participants’

decimal age (Netherlands (NL): Nchildren = 58, Nadults = 15; United Kingdom (UK) : Nchildren = 25,

Nadults = 15). The boxplots show the median per age group, and the lower and upper quartiles. The

whiskers indicate the lowest and highest data points within plus or minus 1.5 times the interquartile range.

Age effect

As shown by our results and the data displayed in Figure 2, children’s ability to recognize vocal emotions

improved gradually as a function of age. In addition, we found that, on average, even the oldest age

group of 10- to 12-year-old Dutch and English children did not show adult-like performance yet. The

4-year-old children that were tested performed at or above chance level while adults generally showed

near ceiling level performance, indicating that our test covers a wide range of age-related performances.

Our results are in line with previous findings that children’s ability to recognize vocal emotions improves

as a function of age (Tonks et al., 2007; Sauter et al., 2013). It may be that children require more auditory

experience to form robust representations of vocal emotions or rely on different acoustic cues than adults,

as was shown for the development of sensitivity to voice cues (Mann et al., 1979; Nittrouer et al., 1993).
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It is possible that the visual feedback caused some learning effects, although the correct response was not

shown after an error, and learning would pose relatively high demands on auditory working memory, as

there were only three items per speaker and per emotion presented in a randomized order.

Language effect
We did not find any cross-language effects between Dutch and English children’s development of vocal

emotion recognition, even though the materials were produced by Dutch native speakers. Earlier research

has demonstrated that although adults are able to recognize vocal emotions across languages, there still

seems to be a native language benefit (Van Bezooijen et al., 1983; Scherer et al., 2001). Listeners were

better at recognizing vocal emotions that were produced by speakers of their native language than another

language. However, these studies used five (Scherer et al., 2001) and nine (Van Bezooijen et al., 1983)

different emotions which is likely considerably more complex then differentiating three basic emotions.

In addition, the lack of a native language benefit may also be due to the fact that Dutch and English are

closely related languages. We are currently collecting data from Turkish children and adults to investigate

whether there are any detectable cross-language effects for typologically and phonologically more distinct

languages.

Future directions
The results of the current study provide a baseline for the development of vocal emotion recognition

for normal-hearing typically developing school-age children using the EmoHI test. Our results show

that there is a large but relatively slow development in children’s ability to recognize vocal emotions

which also brings up the question on which specific acoustic cues children are basing their decisions and

how this differs from adults. Future research using machine-learning approaches may be able to further

explore such aspects. We are currently collecting data from children with CIs for whom the amount of

auditory exposure is reduced due to degraded auditory input. The reduction of auditory exposure may

delay or even limit the development of vocal emotion recognition in children with CIs, as some acoustic

cues may not be available to hearing-impaired children due to degraded auditory input (Nakata et al.,

2012). To conclude, the evident development in children’s performance as a function of age and the

generalizibility across the tested languages show the EmoHI Tests’ suitability for future applications with

hearing-impaired or other clinical populations of children and adults across different languages.

ACKNOWLEDGMENTS

We are grateful to all children, parents, and students that participated in the study, the speakers of

our stimuli, and Basisschool de Brink in Ottersum, Basisschool de Petteflet, and BSO Huis de B in

Groningen for their help with recruiting child participants. We would also like to thank Iris van Bommel,

Evelien Birza, Paolo Toffanin, Jacqueline Libert, Jemima Phillpot, and Jop Luberti (illustrations) for their

contribution to the development of the game interfaces, and Monita Chatterjee for her advice on recording

the sound stimuli. This work was funded by the Center for Language Cognition Groningen (CLCG),

a VICI Grant from the Netherlands Organization for Scientific Research (NWO) and the Netherlands

Organization for Health Research and Development (ZonMw) (Grant No. 918-17-603), the Medical

Research Council (Senior Fellowship Grant S002537/1), and framework of the LabEx CeLyA (“Centre

Lyonnais d’Acoustique”, ANR-10-LABX-0060/ANR-11-IDEX-0007), and the French National Research

Agency.

REFERENCES

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., and

Grothendieck, G. (2014). Package ‘lme4’. R Foundation for Statistical Computing, Vienna, 12.

Bänziger, T. and Scherer, K. R. (2010). Introducing the Geneva Multimodal Emotion Portrayal (GEMEP)

Corpus. In A Blueprint for Affective Computing: A Sourcebook and Manual, pages 271–294.

Chatterjee, M., Zion, D. J., Deroche, M. L., Burianek, B. A., Limb, C. J., Goren, A. P., Kulkarni, A. M.,

and Christensen, J. A. (2015). Voice emotion recognition by cochlear-implanted children and their

normally-hearing peers. Hearing research, 322:151–162.

Dyck, M. J., Farrugia, C., Shochet, I. M., and Holmes-Brown, M. (2004). Emotion recogni-

tion/understanding ability in hearing or vision-impaired children: do sounds, sights, or words make the

difference? Journal of Child Psychology and Psychiatry, 45(4):789–800.

5/6

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019

67



Harms, M. B., Martin, A., and Wallace, G. L. (2010). Facial Emotion Recognition in Autism Spectrum

Disorders: A Review of Behavioral and Neuroimaging Studies. Neuropsychology Review, 20(3):290–

322.

Hopyan-Misakyan, T. M., Gordon, K. A., Dennis, M., and Papsin, B. C. (2009). Recognition of Affective

Speech Prosody and Facial Affect in Deaf Children with Unilateral Right Cochlear Implants. Child

Neuropsychology, 15(2):136–146.

Mann, V. A., Diamond, R., and Carey, S. (1979). Development of voice recognition: Parallels with face

recognition. Journal of Experimental Child Psychology, 27(1):153–165.

Morton, J. B. and Trehub, S. E. (2001). Children’s Understanding of Emotion in Speech. Child

Development, 72(3):834–843.

Nagels, L., Gaudrain, E., Vickers, D., Hendriks, P., and Başkent, D. (in review). School-age children’s
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Abstract 
In this study, we present a new experiment in order to study the Lombard effect in telepresence robotics. In 

this experiment, one person talks with a robot controled remotely by someone in a different room. The 

remote pilot (R) is immersed in both environments, while the local interlocutor (L) interacts directly with the 

robot. In this context, the position of the noise source, in the remote or in the local room, may modify the 

subjects’ voice adaptations. In order to study in details this phenomenon, we propose four particular 

conditions: no added noise, noise in room R heard only by R, virtual noise in room L heard only by R, and 

noise in room L heard by both R and L. We measured the variations of maximum intensity in order to quantify 

the Lombard effect. Our results show that there is indeed a modification of voice intensity in all noisy 

conditions. However, the amplitude of this modification varies depending on the condition. 

Introduction 
When social entities are interacting, they automatically adapt their behavior to adverse conditions which 

could jeopardize their communication. In particular, vocal modifications due to noise are known as the 

Lombard effect. This phenomenon was first documented in humans (Lombard, 1911), then in other animal 

species, especially birds and mammals (Zollinger & Brumm, 2011). Moreover, the Lombard effect has 

implications for the design of virtual agents and social robots. Indeed, it can impair speech recognition 

systems, which are generally based on speech corpus recorded in quiet conditions (Hanson & Applebaum, 

1990; Junqua, 1993). Implementing the Lombard effect in dialog systems would also increase their adaptation 

to noisy environment in a biomimetic way. 

 

The Lombard effect consists mainly in an increase of speech intensity. It is an automatic phenomenon, which 

can only partly be controlled by the speaker (Pick et al., 1989). It varies with the type of noise and differs 

greatly from one individual to another. It also depends on the speaker’s involvement. Indeed, there is some 

evidence showing that the Lombard effect is stronger during more interactive tasks: It increases during story-

telling vs. labelling (Amazi Deborah K. & Garber Sharon R., 1982), communication with another vs. reading 

(Junqua, Fincke & Field, 1999), or vs. self-talk (Garnier, Henrich & Dubois, 2010). The sound immersion 
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techniques used in such experiments are also important, as speech modifications may be stronger when noise 

is played through headphones than over loudspeakers (Garnier, Henrich & Dubois, 2010).  Furthermore, the 

intensity is well known as one of the prosodic parameters much implied for producing different socio-

affective attitudes (authority, surprise etc.) in many languages (Aubergé, 2015). In face to face interaction, the 

intensity variations due to the Lombard effect are almost never confused with those having a socio-affective 

meaning. However, in the case of remote interaction, an ill-formed Lombard effect could be perceivably 

confused with social affect cues (Aubergé, 2017). 

 

The paper will focus on a study concerning the Lombard effect in telepresence robotics. The specificity of this 

context is that all interlocutors are not present in the same room: one of them interacts remotely through a 

robot, which embodies its pilot in the “local” space. It is therefore an asymmetric system because the pilot 

needs to be acoustically immersed in both remote and local environment, while the interlocutors talk directly 

with the robot in the local environment. Because the Lombard effect happens automatically, it should affect 

the pilot’s voice regardless of where the noise comes from. On the opposite, if the noise occurs in the remote 

space, the interlocutors cannot hear it as loud as the pilot, potentially not at all. However, they can hear the 

pilot’s vocal adaptations, which could modify their behavior. In this paper, we propose an experiment in order 

to study these assumptions and present some results.  

Materials & Methods 

Methodology 

In order to realize this study, we designed an experiment involving two subjects separated in two different 

rooms as shown on Figure 1. One of them played the role of the remote pilot (R), and the other one was the 

local interlocutor (L), interacting with the telepresence robot. Several configurations were tested in order to 

isolate the features of the Lombard effect in remote communication. 

 

 Test conditions 

A: quiet in both rooms 

B: noise in the remote space 

C: “virtual noise” in the local space 

D: noise in the local space 

 

 

Figure 1. Experimental set-up. 

 

The condition A was used in order to have a reference with no added noise. In all other conditions, R heard a 

noise, but this noise was not always audible by L. In condition B, a noise was played in R’s room. As R voice 

was recorded with a headworn microphone, this noise was largely attenuated for the other subject, thus there 

was no need for R to speak louder to improve speech intelligibility. On the contrary, even if L did not hear the 

noise in this condition, L could need to speak louder in order to be understood by R. In condition D, a noise 

was played in the local space, and both subjects could hear it. This case is close to the standard communication 

with noise, where interlocutors are sharing the same environment. Finally, in condition C, a pre-recorded 

noise was injected in the headphones of R, in order to make R believe that this sound was existing in the local 

space and was heard by L.  
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Procedure 

The experiment was introduced to the subjects as a test of the visual interface of a telepresence robot. The 

subject L was sitting in front of the robot and asked a list of simple questions to the subject R, who was the 

pilot of the robot. These questions were designed in order to be very simple, and trigger a finite set of 

answers. Examples of these questions (translated in English) are: “Which is the color of the grass?”, “How 

many legs does a horse have?”, “How much are 2 x 2?”. Every 10 questions, there was a special instruction, 

requesting R to handle the robot via the interface. We pretended that we were measuring the answering time, 

in order to quantify the accessibility of the pilot interface. The subjects were informed that the test has to be 

done without a break. Indeed, during our first test, the subject L stopped speaking when the noise D was 

playing. The three different noises were regularly triggered by an experimenter.  

 

To prevent bias in the experimental results, we wanted to nudge the subjects into thinking that noise 

occurrences had no link with the experiment. The noise sources were therefore hidden and diffused 

occasionally. We used pre-recorded realistic noises of a coffee machine and a drill. A ladder and a tool box 

were placed in the corridor at the entrance of the platform to suggest that there were building works in 

progress. Before the debriefing, most of the subjects believed that the noises were incidental, and none of 

them guessed that the aim of the experiment was to measure their vocal adaptation to noise. This confirms 

that our scenario was credible. Fulfilling the list of 140 questions took approximately 15 minutes long. 

 
Technical specifications 

Robot 
The telepresence robot used was RobAIR Social Touch. It was co-constructed with the fablab of the LIG 

(Laboratoire d’Informatique de Grenoble). It uses a ROS architecture, and the teleconferencing interface is 

based on WebRTC. Contrary to most of telepresence robots (Kristoffersson, Coradeschi & Loutfi, 2013), it does 

not look like a screen on wheels, but is closer to a slightly anthropomorphic robot carrying a tablet computer. 

On either side of the “head” of the robot, one omnidirectional microphone Behringer B5 is placed. Signals 

recorded by both microphones are digitalized by an audio interface UR22MKII (Steinberg), and sent to R’s 

headphones in order to reproduce a pseudo binaural hearing. R’s voice is emitted by a loudspeaker JBL GO+ 

which is placed under the tablet computer.  

 

Echo cancelation 

A local wireless router was used, the network latency was therefore negligible. However, visual and vocal 

signals cannot be transmitted instantaneously by WebRTC applications. As (Počta & Komperda, 2016), we 

obtained a mouth-to-ear delay of around 150 ms, which is pretty good according to telecommunication 

standards (ITU, 2003). This delay means, though, that there is an echo effect: the pilot R can hear her/his voice 

emitted by the loudspeakers of the robot and recorded by its microphones. This echo effect can greatly affect 

the quality of communication, so we used an algorithm of echo-cancelation. It consists simply in reducing the 

volume of R’s headphones when s/he is talking, and waiting 150 ms before returning to the usual volume. 

 

Noise sources 

We used two loudspeakers JBL GO+ as sound sources. One was placed next to a coffee machine in the corridor 

adjacent to R’s room. It diffused an amplified audio recording of the coffee machine startup (condition B). The 

other loudspeaker was placed in a room adjacent to L’s room and diffused drill noises (condition D), which 

were pre-recorded with the microphones of the robot (condition C). Both sound sources were calibrated at 55 

dB(A) with a sound level meter (Lutron SL-4001) placed at the location of the subjects. Moreover, the local 

space was particularly reverberant, with a reverberation time of about 0.8 s. 
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Recordings and calibration 

The voices of both subjects were captured by two wireless headworn microphones Sennheiser HSP4 and 

digitalized with an audio interface UR22MKII (Steinberg). R’s signal was sent to L through the loudspeakers of 

the robot. However, L’s signal was only used for measurement purpose. What R heard of the local space was 

recorded by the microphones of the robot. In addition, the signal of the internal microphone of the computer, 

as well as the monitor signal of the stream heard by R were also recorded, in order to be able to track noise 

occurrences. 

 

The headphones worn by R were an AKG K242. They were calibrated with an artificial ear (Brüel & Kjær), in 

order to make the sounds perceived by R as loud as those in L’s room. The sound attenuation through these 

headphones is negligible. The loudspeaker of the robot was also calibrated with a sound level meter (Lutron 

SL-4001), to ensure that the loudness of R’s voice was faithfully transmitted.  

 
Analysis of the results 
14 groups of 2 subjects participated in this experiment. Most of them were native French speakers (25/28), 

two were fluent in French and one has a basic level, but sufficient to read the questions. Noise sequences were 

annotated and we extracted each keyword answered by subjects R (ex: “green”), and each pattern of questions 

read by subjects L (ex: “What is the color of…?”). We studied only the keywords / questions which were 

repeated at least 50 times among all the tests. 

 

Recordings were filtered with a A-weighting digital filter (Zhivomirov, 2019) and voice intensity was 

computed by segments of 20 ms. Global results for maximum intensity can be seen on Figure 2. However, 

these results hide a great variability between subjects and between key-words / questions which could bias 

the analysis. Indeed, the number of each keyword in each condition varies from on experiment to another, 

because the answers of subjects R are not constrained. Therefore, in order to properly quantify the differences 

between each condition, we implemented a linear mixed effect model with R, following the tutorial of (Winter, 

2013). This method allows to build a very simple model from the data, and at the same time, it provides 

measures of statistical significance. Written in R formula, this model is: 
 

��� �����	��
 ~ ���	� �������� +  (1|��
����) +  (1|	�����) 

 
Figure 2. Maximum intensity in each noise condition 

 

Summary of the models are shown in Table 1. They are coherent with the previous visualization, which means 

that we can base our observations on both figures. First, we note that the subjects R increased their maximum 

intensity in the 3 noisy conditions, while the subjects L spoke louder only in condition D, that is, when they 
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could hear the noise. This shows that the Lombard Effect can be observed during telepresence robotics. 

However, it seems that for everyday noise with a moderate intensity level and when the subjects are focused 

on a question/answer task, this effect is very small, in the range of 1 to 3 dB. By way of comparison, 

(Winkworth Alison L. & Davis Pamela J., 1997) found an increase up to 10 dB SPL with a Cocktail party noise 

at 55 dB SPL for reading and monologue tasks.  

 

 Subjects R Subjects L 

Condition A B C D A B C D 
Maximum 

intensity (dB) 
64.61 + 2.98 + 1.19 + 2.38 69.19 - 0.06 - 0.30 + 2.24 

Standard error 

(dB) 
1.11 0.36 0.37 0.36 1.86 0.21 0.21 0.20 

Number of 

extracts 
1263 160 146 150 1125 118 129 143 

Statistical 

significance 
��(1) = 98.47 ;  # < 2.2 �&'( ��(1) = 132.59 ; # < 2.2 �&'( 

 

Table 1. Results of the linear mixed effect model (applied separately for R-data and L-data). 

Statistical significance was obtained by comparison with the null-model:  ��� �����	��
 ~ 1 + (1|��
����)  + (1|	�����) 

 

Another interesting result is that the increase of intensity for subjects R depends on the noise condition. It is 

higher in condition B vs C and D, namely when the noise was played in the same room as the pilot, and not in 

the headphones, which is the opposite of the results expected from (Garnier, Henrich & Dubois, 2010). 

However, the noises used in condition B were very different from the ones used in C/D. Indeed, they 

presented some intensity spikes up to 61 dB(A). Moreover, a posteriori recordings with the robot in R’s room 

also showed that the intensity of the noises B was about 3 dB louder during stationary phase than the noises 

C/D. Besides, it is worth noticing that while the subjects R were talking, the volume of their headphones was 

reduced from 50% to 10%, in order to perform echo cancelation, which means that the intensity of noises C/D 

was greatly reduced at the time they spoke, which was not the case in condition B. 

 

The most interesting result concerns the difference between condition C and D. The subjects R heard the same 

noises in both conditions, but their increase of intensity was greater in condition D, when the subjects L could 

also hear the noise and adapt to it. This may highlight an effect of entrainment: the subjects R increased their 

voice intensity not only because of the noise, but also because their interlocutors L were speaking louder. Such 

observations were also made by (Székely, Keane & Carson-Berndsen, 2015). However, this effect was not 

observed for the subjects L, who did not increase their voice intensity in condition B and C. This may be 

explained by the nature of their task (reading) or because they were not able to hear the noise which made 

their interlocutors speak louder.  

 

Discussion and conclusion 
In order to study the Lombard effect in the context of telepresence robotics, we performed an experiment 

with pairs of subjects (R and L), focused on a question/answer task. Four noise conditions were tested:  

A - without noise, B - only R hears the noise, C - only R hears the noise over headphones, and D - R and L hear 

the noise. The noise occurrences were very short and perceived as accidental by the participants. However, 

whenever they were able to hear the noise, they had a tendency to speak a bit louder. An entrainment effect 

was also noted for the subjects R, who spoke louder when L could also hear the noise. These increases of voice 

intensity being very subtle, they could easily be mistaken as expressive variations indicating socio-affects. 

Further work will involve comparing the pitch and durations of vocal productions in the four different noise 

conditions. 
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Abstract 
With	the	rapid	development	of	technology	used	in	creating	video	games,	the	use	of	non-player	character	(NPCs)	—

characters	controlled	by	the	game	that	truly	interact	with	the	gamer—have	become	a	well-established	feature	of	

video	games	in	general.	On	the	one	hand,	NPCs	are	state	of	the	art	and	therefore	cannot	be	left	aside.	On	the	

other	hand,	they	are	very	useful	in	terms	of	game	mechanics	and	narrative,	as	they	can	be	used—for	example—as	

companions	to	the	player’s	characters,	often	acting	as	helpful	guides	in	vast	open-world	scenarios.	These	NPCs	are	

predominantly	human	beings	or	anthropomorphised	animals.	Nonetheless,	many	games	feature	authentic	animal	

characters	that	the	player	is	allowed	to	interact	with.	It	is	not	unusual	for	a	player	to	form	bonds	with	such	NPCs,	

or	even	develop	a	kind	of	a	relationship	with	them.		

Against	this	background,	this	paper	aims	to	look	at	different	examples	of	interaction	between	players	and	their	

(authentic)	animal	companion	in	the	highly	lauded	video	game	The	Last	Guardian,	where	the	player’s	companion	is	

a	giant	mythical	man-eating	beast	called	Trico.	How	is	bonding	or	relationship	building	established	and	enhanced	

in	this	unusual	scenario?	How	is	the	resulting	attachment	made	perceivable?	And	what	kind	of	strategies	of	

interactivity—particularly	verbal	and	vocal	interactivity—occur	between	player	and	companion?	In	order	to	

answer	these	questions,	this	study	analyses	data	from	YouTube	videos	of	so-called	‘Let’s	Players’,	who	make	their	

actions	and	decisions	accountable	by	constantly	commenting	their	experiences	during	the	playthrough.	The	

methodology	used	to	analyse	the	data	is	based	on	the	methods	of	ethnomethodolgy	and	conversation	analysis,	

including	detailed	transcriptions	of	the	analysed	material.		 
 

Background 

In	2009,	a	preview	of	the	computer	game	The	Last	Guardian	was	released	at	the	premier	trade	event	of	the	video	

game	industry,	E3.	The	trailer	shows	a	gigantic	mythical	half-bird	half-mammal	creature	and	a	boy	interacting	with	

each	other,	hinting	in	certain	key	moments	at	the	co-operational	gameplay	and,	furthermore,	their	apparently	

fond	relationship	(i.e.,	the	boy	patting	the	creature’s	head	or	sleeping	snuggled	up	in	his	feathers,	cf.	

G4VideogameTrailers,	2009).	Being	the	third	instalment	of	a	highly	acclaimed	saga	created	by	game	designer	

Fumito	Ueda,	the	trailer	whipped	fans	of	the	two	first	titles—Ico	(Team	Ico,	2001),	and	Shadow	of	the	Colossus	

(Team	Ico,	2005/2011/2018)—into	a	state	of	frenzy.	However,	The	Last	Guardian	was	not	released	until	seven	

years	later	(mainly	due	to	the	change	of	hardware	from	PS3	to	PS4),	in	2016,	causing	devoted	YouTubers	to	

announce	their	enthusiasm	with	Let’s	Play	titles	such	as	“THE	LONG	WAIT	IS	FINALLY	OVER!“	(Pewdiepie)	and	“I’ve	

WAITED	SO	LONG	FOR	THIS!!!”	(Jacksepticeye).	As	the	trailer	hinted,	the	gameplay	consists	of	the	player	

controlling	the	unnamed	boy,	cooperating	with	the	mythical	beast	called	Trico—a	non-player	character	

(NPC)	controlled	by	the	computer	game—unravelling	riddles	from	their	mysterious	past	by	solving	puzzles	and	

exploring	the	vast	area	of	the	game	world.	The	Last	Guardian	focuses	exclusively	on	the	interaction	between	the	

player	and	an	authentic	animal	NPC,	bringing	it	to	a	whole	new	level:	Despite	the	fact	that	Trico	is	introduced	as	a	

dangerous,	man-eating	beast,	an	attachment—and	even	deeply	emotional	relationship—forms	between	the	player	

and	the	animal	companion,	which	can	be	followed	already	in	the	first	thirty	minutes	of	the	playthrough	(averaging	

approximately	twelve	hours	in	total).	

Though	the	still-young	field	of	human-animal	studies	(HAS)	has	increasing	scholarly	output,	research	concerning	

virtual	animals	is	still	scarce.	In	game	studies,	as	well,	subjects	concerning	animals	in	video	games,	thematising	

their	representation,	their	role	within	the	game,	or	even	their	emotional	value	are	difficult	to	find.	It	seems	that	in	

virtual	worlds,	the	topics	of	ethics	and	emotions	are	still	reserved	for	human	beings—i.e.,	the	players	and	their	

avatars	(cf.	Sicart,	2009;	Isibister,	2013)—with	the	exception	of	Chittaro	and	Sioni	(2012),	who	focus	on	aspects	of	

violence	against	animals—namely	insects	(against	which	violence	seems	more	acceptable	than	against	other	

species)—and	Wilson	(2009),	who,	in	contrast,	describes	the	ethical	use	of	farm	animals	according	to	the	rules	of	

Castles	of	Burgundy,	even	though	it	is	an	analogue	boardgame.	Janski	(2016)	provides	a	categorisation	for	animals	

in	video	games,	emphasising	the	ethically	questionable	fact	that	they	still	act	mostly	as	enemies	or	background	

entities.	The	intriguing	aspect	is	the	transformation	suggested	by	the	game	creators:	Referred	to	as	man-eating	

beast,	Trico	is	in	fact	introduced	as	an	enemy	(this	is	underlined	more	pointedly	in	the	original	Japanese	game	title

人喰いの大鷲トリコ,	The	Man-Eating	Giant	Eagle,	Trico).	At	the	same	time,	he	is	designated—mostly	by	the	first	

insights	in	the	trailer	from	2009—to	become	a	dear	companion.		
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Against	this	multi-layered	background,	this	paper	presents	a	preliminary	study	on	how	the	bonding	or	relationship	

between	players	and	their	mythical	companion	in	The	Last	Guardian	is	established	and	enhanced.	This	was	done	

by	analysing	how	this	attachment	is	made	perceivable,	primarily	through	means	of	verbal	and	vocal	interactivity.		

	 

Materials & Methods 
In	order	to	answer	the	question	of	how	bonding—or	even	a	relationship—between	the	player	and	their	animal	

companion	is	established	and	enhanced,	it	is	necessary	to	closely	look	at	the	interaction	between	the	two.	

Considering	this,	the	method	of	ethnomethodology	and	of	conversation	analysis	are	being	used,	as	they	“provide	

an	analytic	resource	through	which	we	can	begin	to	exploit	the	opportunities	provided	through	video”	(Heath	

2004,	279).	Instead	of	observing	players	by	asking	them	to	constantly	commentate	their	actions	while	playing,	the	

chosen	material	is	“naturally	occuring	data”	(ten	Have,	2007:	9)	and	consists	of	YouTube	videos	of	so	called	‘Let’s	

Plays’.	Being	both	performance	and	entertainment,	these	videos	primarily	demand	continual	commentary	by	the	

player(s)	while	playing	through	a	game.	By	doing	so,	their	actions	are—in	the	terminology	of	ethnomethodology—

made	accountable:	“I	mean	observable-and-reportable,	i.e.,	available	to	members	as	situated	practices	of	looking-	

and-telling”	(cf.	Garfinkel,	1967:	1).	This	making-accountable	is	done	using	all	aspects	of	verbal	and	non-verbal	

communication.	It	is	a	peculiar	and	fascinating—because	it	is	mostly	accurate—claim	that	everything	of	

importance	and	relevance	for	the	interaction	is	brought	forward	by	the	participants,	and	thus	can	be	observed.	In	

our	case,	the	method	of	ethnomethodology	and	of	conversation	analysis	very	much	suits	the	setting	of	the	

analysis,	as	it	forces	us	to	really	stay	focused	on	the	interaction	itself	by	operating	“closer	to	the	phenomenon”	and	

by	working	“on	detailed	renderings	of	interactional	activities”	(ten	Have,	2007:	9).		

The	Let’s	Plays	were	chosen	semi-randomly—the	high	profile	of	the	Let’s	Player	(i.e.,	Pewdiepie)	or	the	quantity	of	

viewers	(i.e.,	Jacksepticeye)	being	determining	factors.	Admittedly,	other	videos	were	chosen	randomly—

emphasising	the	ethnomethodological	approach	that	any	material	has	to	make	its	issues	accountable—from	the	

vast	amount	of	Let’s	Play	videos	uploaded	daily.	The	material	consists	of	videos	by	the	following	four	Let’s	Players:	

devotees	Pewdiepie	[P]	and	Jacksepticeye	[J]	and	freshmenChristopherOdd	[C]	and	TetraNinja	[N].	(The	letters	in	

the	brackets	will	be	used	in	the	transcripts,	along	with	[T]	for	Trico).	The	lack	of	female	Let’s	Players	is	deliberate,	

because	the	subject	of	gender	and	gaming—game	studies	being	aware	that	female	gamers	are	much	rarer	than	

their	male	counterpars—cannot	be	tackled	in	this	paper.		

 

First Insights 
This	section	presents	first	insights	on	how	bonding	with	animal	companions	in	video	games	is	established	and	

made	perceivable	in	The	Last	Guardian.	For	this	purpose,	a	set	of	initial	sequences	within	the	first	thirty	minutes	of	

video	material	of	the	four	Let’s	Plays	mentioned	above	was	analysed,	focusing	on	the	most	prominent	and	

important	features	in	verbal	and	vocal	interaction.		

The	resulting	major	points	are	linked	here	with	further	implications	and	interpretation:	

a. direct	speech	to	address	Trico	–	enabled	through	engaging	into	empathic	actions	(injuries,	food)	

b. reference	to	authenticity	of	appearance	and	behaviour	of	Trico	–	ensuring	him	to	be	an	equal	

interactional	partner	

c. comparison	to	known	animal	behaviour	or	even	own	pets	–	as	Trico	is	an	unknown	mythical	creature	

d. development	and	expanding	of	Trico’s	interactional	repertoire	–	inviting	the	player	to	react	accordingly	

These	aspects	apply	to	all	of	the	Let’s	players,	even	though	they	have	differing	background	in	knowledge	and	even	

in	stance	on	companionship	as	such.	It	is	interesting	to	see,	how	the	two	devotees	Pewdiepie	and	Jacksepticeye	

have	to	adjust	their	initial	most	positive	attitude	towards	Trico,	which	initially	behaves	not	as	a	fond	companion	

but	turns	out	to	be	utterly	hostile.	They	notwithstanding	follow	the	same	strategies	as	the	others.		

The	next	two	aspects	are	more	specialised	features	of	some	of	the	Let’s	players,	but	seem	nontheless	important:	

e. talking	as	Trico	and	imitating	kind	of	creaturesque	voice	–	immerging	in	the	mindset	of	Trico	

f. talking	inside	the	game	world	as	the	player	character	(although	shortly)	–	immerging	into	of	the	game	

world	by	using	its	language	

Pewdiepie,	who	compares	his	pet	dog	Edgar	with	Trico	regarding	behaviouristic	issues	(something	he	calls	“dumb”	

without	explaining	in	detail	in	this	material	what	is	meant),	is	also	the	one	who	extensively	talks	as	Trico.	The	way	

he	is	doing	this	prosodically	appears	to	express	his	playful	attitude,	but	there	seems	to	be	more	that	meets	the	eye	

here:	Talking	as	Trico	is	also	a	possible	attempt	to	make	its	intentions	perceivable	and	by	thus	all	the	more	
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controllable.	This	is	in	a	sense	similar	to	the	function	of	the	narrator	of	the	game,	who	being	the	older	self	of	the	

boy	lets	the	player	access	his	thoughts,	making	the	whole	situation	more	comprehensible	(cf.	Brotherson,	2016).	

Trico’s	highly	mentioned	authenticity	(b.)	implies	him	having	a	will	of	its	own,	making	him	and	his	behaviour	often	

difficult	to	comprehend	and	to	control.	The	statement	by	ChristopherOdd	illustrates	this	aspect	perfectly:	“What	

do	we	know,	we’ve	never	met	a	man-eating	beast	before”	(ChristopherOdd,	2016,	at	00:09:40).	Therefore,	lending	

him	a	voice	seems	to	be	a	way	to	overcome	his	uncertain	otherness	and	to	be	able	to	bond	with	him	more	easily.	

Two	last	important	aspects	shall	be	pointed	out.	At	the	same	time,	they	represent	two	main	fundamental	concepts	

commonly	found	in	video	game	analysis	(cf.	Kato/Bauer	2018).	

g. game	mechanics	provide	certain	key	moments,	where	gradual	enhanced	bonding	relationship	is	made	

perceivable,	but	where	the	player	merely	reacts	to	what	is	given,	not	setting	rules	and	guidelines	himself	

h. on	the	contrary,	the	player	is	able	to	act	as	he	thinks	best	when	labelling	Trico	(pet,	friend,	pal),	despite	

the	predefined	conceptions	considered	by	the	game	creators	

To	give	a	more	detailed	insight	in	the	analysis,	two	examples	may	be	given.	They	illustrate	the	mentioned	points	a)	

and	g)	from	the	list	above.	The	transcripts,	which	are	provided	for	better	comprehension	of	how	things	are	said,	or	

in	context	of	what	is	happening	in	the	game,	have	been	created	on	the	basis	of	the	German	transcription	system	

GAT	2	(cf.	Selting	et	al.,	2009).	For	the	transcription	conventions	of	this	system	and	the	meaning	of	individual	

symbols,	please	refer	to	the	key	at	the	end	of	this	article.		
	

a)	First	Evidence	of	Interaction	as	Turning-Point:	From	talking	about	to	talking	to	Trico	

One	of	the	most	intriguing	aspects	concerns	the	way	Trico	is	addressed	by	the	players.	During	the	first	encounter	

between	the	player	and	the	mythical	beast,	all	except	ChristopherOdd	switch	from	third-person	narrative	to	a	

more	direct	way	of	addressing	the	beast.	Pewdiepie	is	the	first	who	switches	to	direct	speech,	resuming	his	

concern	about	the	unexpected	beginning,	when	Trico	awakes,	but	immediately	turns	hostile	(“Trico,	oh	my	god,	

what	happened?”,	Pewdiepie,	2016,	at	00:06:05).	TetraNinja	is	the	second,	who	instantly	tries	to	pet	Trico	

(“Friend?	Friend?	Let	me	pet	you!”,	TetraNinja,	2016,	at	00:05:30),	which	nourishes	the	supposition	that	doing	

something	with	the	interactional	partner	incites	the	use	of	direct	speech.	The	turning	point	in	Jacksepticeye’s	

playthrough	seems	to	confirm	this	as	he	switches	to	direct	speech	[J1_08]	after	he	realises	that	Trico	is	injured	

[J1_02;	Jacksepticeye,	2016,	transcript	begins	at	00:06:22]:		
 
           Trico awakens and turns hostile, roaring at the boy, Jacksepticeye looks concerned 

J1_01  J:  ! ’OH!, 
boy backs off, turning to face Trico from a distance, stands still, Trico calms down, 

talk by the narrator, boy and Trico face each other steadfastly   

J1_02      <<h> OH he is !^HURT!>; 
J1_03      oh GOD. 

J1_04      <<ff> I am gonna !AB!solutely (-) FALL in lOve with this crEAture.>  
           Jacksepticeye looks agitatedly into the camera, facing the viewer directly 
J1_05      by the WAY; 

J1_06      the this is what this games is ALL gonna be abOUt; 
           Jacksepticeye looks back onto his screen 

J1_07  T:  wincing sound, looks at his side 
J1_08  J:  ↑hel’LO? 
           boy starts to approach Trico slowly 

J1_09      ↑hey ¯TRIco? 
           boy starts to run towards Trico  

J1_10      ↑you_re good ¯BUDdy? 
J1_11      he got that THING in his lEg; 

	

Significantly,	Jacksepticeye	inserts	a	(fortissimo)	meta-statement	about	his	future	relationsship	with	Trico	at	this	

very	turning-point	[L	J1_04–	J1_06].	Even	if	the	reason	for	placing	his	commitment	against	all	odds	right	at	this	

point	is	not	made	accountable,	the	fact	that	Trico	is	hurt	(L	J1_02)	supports	the	positive	stance	of	Jacksepticeye	as	

a	helping	person	in	this	game.	While	he	performs	this	meta-statement,	his	player	character	and	Trico	face	each	

other	steadfastly.	What	happens	next	is	a	beautiful	establishment	of	initial	hellos,	even	though,	of	course,	only	the	

player	is	performing	the	addressing:	Trico	quits	the	staring	by	wincing	and	looking	at	his	side	[J1_07],	causing	

Jacksepticeye	to	immediately	react	to	this	action	with	a	high-pitched	“hello”	[J1_08].	It	seems	that	he	insinuates	a	

conversational	opening,	with	the	behaviour	of	Trico	functioning	as	the	summons	(Schegloff	1968).	This	is	also	

reasonable	to	assume	as	at	this	point	he	(aka	the	boy)	starts	to	move	towards	the	verbal	conversational	partner.		

The	physical	interaction	during	the	following	removal	of	a	spear	results	in	an	increase	in	the	direct	speech	by	all	

three	players,	who	had	already	started	to	address	Trico	before.	ChristopherOdd	is	the	last	to	switch	in	direct	
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speech	[L	C1_01],	after	five	long	minutes	of	playthrough.	Notably,	it	coincides	with	a	statement	about	authenticity,	

which	is	prosodically	complex	by	rising	and	falling	fluctuation	in	pitch	[L	C1_03–C2_04;	ChristopherOdd,	2016,	

transcript	begins	at	00:10:06]:			
	
C1_01   C:  so you_re not sUre if you WANT that one? 
C1_02       is THAT the deal? 

C1_03       he_s sO ´LIfe `like. 
C1_04       it_s !^CRA!zy. 

		

This	appealing	combination	underlines	the	assumption	that	authenticity	of	the	animal’s	appearance	and	behaviour	

very	much	incites	the	acceptance	of	the	virtual	other	as	a	partner	in	interaction,	as	the	player	begins	treating	him	

as	a	partner	in	communication	as	well.		
	

g.	Key	moments	implemented	by	the	game	(mechanics)		

It	is	the	game	mechanics	that	provide	certain	key	moments,	where	gradual	enhanced	bonding	or	even	relationship	

is	made	perceivable	and	where	the	player	merely	reacts	to	what	is	given,	rather	than	setting	rules	and	guidelines	

himself.	In	these	key	moments,	the	player	is	confronted	with	tasks,	which	turn	out	to	be	one	of	the	main	driving	

forces	leading	to	interaction	with	Trico	and	at	the	same	time,	strongly	invite	the	player	to	act	in	an	empathic	way:	

The	injured	animal	has	to	be	treated	and	fed,	and	freed	from	his	chains	at	last.	Thoughtfully,	this	moment	of	

liberation	is	connected	to	the	possibility	to	call	Trico	by	pushing	a	certain	controller	button,	tying	back	the	freedom	

aspect	in	favour	of	that	of	companionship.	Or	in	other	words:	Trico	is	not	set	free	to	be	free,	but	to	make	him	stay	

and	follow.	Pewdiepie	choses	an	other	way	to	make	Trico	stay	with	him:	He	climbs	on	him	and	refuses	to	let	go	[L	

P1_03],	emphasizing	on	their	togetherness	by	stressing	the	“we”	and	purposefully	rendering	a	grammatically	

incorrect	sentence	(L	P1_04,	Pewdiepie,	2016,	transcript	begins	at	00:16:05).		
 
P1_01  P:  your_re !FREE! trIco-  

P1_02      you look a little NAked but that_s ok.  
           sits in the beast’s neck holding on to the fur on its head, head-up-display         

           indicates how to let go by pressing a controller button 

P1_03      <<breathy voice> i_m NOT gonna let go.>   
P1_04      `WE_re gonna go. 

	

By	doing	this,	Pewdiepie	misses	another	key	moment	of	bonding	within	the	liberation	scene,	which	is	provided	by	

a	cutscene:	When	standing	on	the	ground,	the	boy	is	confronted	with	Trico	lowering	down	to	him.	The	boy	

carresses	Trico’s	nose,	saying	laughingly	“So	that’s	what	you	look	like!	Pleased	to	meet	you,	Trico!”,	engaging	into	a	

proper	introduction.	At	this	scene,	clearly	staged	as	highlight	by	camera	work	and	use	of	music,	Jacksepticeye	is	

shouting	out	loud	in	excitement.	For	ChristopherOdd,	this	is	the	moment	to	start	talking	directly	to	Trico	whenever	

they	have	to	cooperate,	making	the	impression	that	they	actually	interact	with	each	other	(i.e.	“Where	do	you	go,	

Trico?”,	ChristopherOdd,	2016,	at	00:15:07).	It	seems	telling,	that	ChristopherOdd,	who	went	into	the	game	as	a	

freshman,	whose	attachment	grew	steadily	(i.e.	being	the	last	to	change	into	direct	speech)	and	who	reads	the	

cues	of	animal	behaviour	best	(i.e.	by	finding	the	key	to	pet	him	at	will),	is	the	only	player	who	make	his	perception	

in	this	aspect	accountable:		
	
C2_01  C:  HE: doesn_t seem to fond of the wAter situation so- (---) 
C2_02      <<smiling voice> you_re kInd to start to sEE our our relAtionship with hIm (--) b BUILding> 

C2_03      like we are both in this BAD situation togEther (.) but- 
C2_04      Obviously there_s some things he can dO that I can NOT? 
C2_05      A:ND- 

C2_06      vice VERsa; 

	

What	ChristopherOdd	expresses	here–also	on	a	prosodic	level	by	stressing	the	words–is	first	of	all,	that	he	actually	

is	“building”	a	“relationship”	with	Trico	[L	C2_02],	even	making	explicit,	that	this	is	something	that	is	obviously	

perceivable	for	the	viewer	(“start	to	see”).	In	addition,	he	makes	clear,	that	this	mentioned	relationship	has	to	be	

understood	as	equal	as	they	both	have	to	help	each	other	[L	C2_3–C2_06],	underlining	the	aspects	of	

companionship	once	more.	

	

Outlook 
This	paper	constitutes	only	a	small	range	of	preliminary	findings	making	way	for	a	more	extensive	discussion	of	the	

analysed	material.	First,	the	major	points	brought	up	in	this	paper	have	to	be	comprehended	more	thoroughly.	

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019

79



Second,	further	insight	into	the	interaction	between	the	player	and	an	authentic	animal	NPC	has	to	be	gained.	To	

this	end,	more	data	of	the	already	selected	four	Let’s	plays	has	to	be	analysed	in	detail.		Also	the	time	span	of	data	

has	to	be	expanded	beyond	the	first	thirty	minutes	of	the	playthrough:	The	analysis	of	the	development	

throughout	the	course	of	the	game	seems	interesting	as	the	already	established	bond	and	trust	is	put	to	the	test	

by	the	game	in	various	ways	later	on,	i.e.	when	Trico’s	stubbornness	annoys	the	player	or	in	the	even	more	

pressing	situation,	when	Trico	actually	becomes	a	man-eating	beast.	This	yields	the	opportunity	to	gain	a	deeper	

understanding	of	the	player-beast	interaction	in	situations	of	conflict.	

After	a	detailed	analysis	of	the	present	data,	extending	the	dataset	with	additional	Let’s	plays	is	a	mandatory	next	

step.	In	doing	so,	gender	related	aspects	are	worth	exploring	in	a	more	thorough	manner	as	well:	Are	female	

players	bonding	in	a	different	way	than	their	male	counterparts,	especially	considering	previously	discussed	

aspects	like	verbal	or	non-verbal	expressions,	making	their	bonding	accountable	and	explaining	their	emotional	

relationship?		

In	order	to	further	support	the	findings	presented	in	this	paper	a	quantitative	study	could	be	conducted	allowing	

for	more	in	depth	analysis	like	comparing	different	outcomes	of	the	Let’s	plays	by	tying	them	back	to	the	various	

backgrounds	(i.e.	playing	the	game	with	previous	knowledge	or	playing	it	‘blind’).		

An	other	very	important	point	is	to	expand	the	different	foci	by	analysing	other	video	games	featuring	authentic	

(non-anthropomorphised)	animal	companions.	The	idea	for	the	The	Last	Guardian	was	given	to	game	designer	

Fumito	Ueda	by	experiencing	the	emotional	bonding	of	the	players	to	the	player	character’s	horse	in	Shadow	of	

the	Colossus,	which	was	unintended	and	therefore	all	the	more	surprising.	It	proves	that	with	the	increasing	

authenticity	of	the	digitally	depicted	animals,	the	willingness	of	the	player	to	bond	with	his	companion	is	

heightened.	Of	course,	a	video	game	like	The	Last	Guardian	carries	this	topic	to	extremes.	But	also	other	video	

games	with	much	lower	threshold	invite	the	player	to	bond	with	their	companion,	revealing	much	of	their	own	

attitude	towards	animals	in	general.	

	

Key to GAT2 transcriptions  
(the	list	below	only	contains	the	conventions	relevant	to	this	article)		

robert_s       words	joined	together	within	units		

<<breathy voice>  >  para-	and	extralingustic	actions	and	events	accompanying	speech 	

acCENT         focal	stress,	accentuation	

accEnt         secondary	stress		

ac!CENT!       pronounced	stress		

Fluctuations	in	pitch	at	the	end	of	intonational	phrases:		

?              steep	rise		

,              medium	rise		

–              even	level		

;              medium	drop		

.              steep	drop		

Intralinear	notation	of	fluctuations	in	stress	and	pitch		

^SO            rising-falling		

¯SO            rising-falling		

`              rising	

´         								 	 	falling	

↑              leap	to	high-pitched	voice	

<<h>   >       high-pitched	voice 

Changes	in	volume	and	pace	of	speech:		

<<ff>  >        fortissimo,	very	loud		
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ABSTRACT

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study

focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab

developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed

of 5 hydrophones and extends over 50 km2 of ocean. Since 2015 we are continuously streaming

the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous

multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect

Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization,

we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features

describing the pitch contour. While preliminary, our results demonstrate a possible route towards

automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca

pods in the area according to the classification of their call types. A large-scale call type classification

would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face

of increasing anthropic pressure.

1 INTRODUCTION

The Orca (Orcinus orca) is a top-predator of the marine food chain (Jefferson et al., 1991). The Northern

Resident Orcas community is composed of several “pods” composed of matrilines (Bigg et al., 1990). This

cetacean can produce 3 different types of signals: clicks, whistles and pulsed calls (Ford, 1989). This study

focuses only on vocalizations (pulsed calls). Some biological studies describe the communication of Orcas

(Ford et al., 1987; Tyson et al., 2007; Weiß et al., 2007; Filatova et al., 2012), based on manual methods.

Related work by Deecke et al. (1999) compared dialects of Orcas using artificial neural networks and

showed that acoustic similarities are significantly correlated with the group association patterns. In order

to analyze the animal’s communication in different spacial and temporal contexts, automated analysis for

captured sound is crucial. For that purpose, the field of bioacoustics offers numerous approaches using

neural networks and deep learning (Glotin et al., 2013). The latter methods were explored to automatically

detect orca calls emitted throughout 3 years of continuous recordings from 2015 to 2017 (Poupard et al.,

2019a). In this study we build on these detections, and compute each vocalisation’s pitch over time. This

pitch analysis serves to differentiate vocalisations. In particular, we extract pitch features and cluster the

vocalizations, partly recovering different call types as annotated by human experts.
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2 MATERIAL

For 20 years, the NGO Orcalab developed and has maintained a unique multi-hydrophone recording

station around Hanson Island (Northern Vancouver Island, Canada) to study Orcas. This acoustic station

is composed of 5 hydrophones and extends over 50 km2 of ocean (Fig. 1). In 2015, we have set up a

continuous recording of all the hydrophones of this station (Fig. 1). The aim is to allow observation and

modelling of bioacoustic activities for various species, at large spacial and temporal scales, including

all details of their ecoacoustic niche, under various geophysical and anthropophonic conditions, more

particularly in order to build new knowledge about Orcas.

Figure 1. Left: Map of the area and the listening range of the 5 hydrophones H1 to H5. Detection zones

indicate which hydrophones can record Orca calls in a given area, w.r.t. thirty years of observations by

Orcalab. Right: Representation of the data acquisition, from recording until storage at Toulon.

3 DATA ANALYSIS

3.1 Vocalization Detector
We first designed an automatic acoustic event extractor (presented in (Poupard et al., 2019c)). Its output

helped us build a dataset composed of 872 Orca vocalization samples and 6801 noise samples (boats,

rain, void. . . ), which we split randomly with 20% for the test set, 60% for the training set and 20% for

the validation set.1 With that in hand, we trained a CNN (originally designed for a bird detection task

(Grill and Schlüter, 2017) to distinguish Orca vocalizations (not clicks) from boats and background noise

(Poupard et al., 2019a). The model was trained with weakly annoted data (one label per file), originally

using global max pooling to aggregate local predictions for comparison against the global label. After

training, the global pooling was removed to obtain local probabilities for pitch and vocalization analysis.

Max pooling lead to spiky local predictions (high precision, but low recall), which were unsuitable for our

purposes. We found that training the model with global mean pooling instead gave much higher recall,

covering the full length of each vocalization without sacrificing precision. The resulting Area Under the

receiver operating characteristic Curve (AUC) of this detector is 89% (Poupard et al., 2019a).

Running this model on the summers of 2015, 2016 and 2017 results in 421,879 detected vocalizations

across all five hydrophones.

3.2 Pitch Analysis
In order to describe call characteristics, the pitch (fundamental frequency) is often used (Berthommier

and Glotin, 1999). The pitch is a property that describes the fundamental frequency of the speech wave

(Houtsma, 1997; Babacan et al., 2013). Like humans, Orcas produce vocalizations that have several

harmonic frequencies, combining into a multi-layered wave (Ford, 1989). Foote and Nystuen (2008) used

pitch to differentiate different ecotypes of killer whales and Shapiro and Wang (2009) developed their

own pitch tracker algorithm (PDA) based on human voice.

In this study, the Parselmouth Python library (Jadoul et al., 2018) was chosen as pitch estimator.

It relies on the autocorrelation (AC) (Boersma, 1993; Berthommier and Glotin, 1999). It is illustrated

1A random split may sample train and test segments from nearby locations, giving an overly optimistic test error. We did not

have enough annotated data for a chronological split avoiding this.
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on a recording of Orca calls in Fig. 2. Computing all the pitches for one day of vocalizations on the 5

hydrophones took half an hour in average on GPU.

Figure 2. Example of a pitch extraction (pitch floor=300, pitch ceiling=2500, voicing threshold=0.2).

The AC only outputs a pitch point if it has a certain confidence in it (using a threshold on the strength

of the unvoiced candidate relative to the maximum possible AC). Thus, with some detected vocalizations,

fewer points were output. This property allowed us to filter out false positives and too low Signal to Noise

Ratio vocalization detections. Keeping only vocalizations with more than 200 points filtered out 284,791

noisy vocalizations and false detections.

We thus extracted the pitch of 137,088 vocalizations.

3.3 Unsupervised Clustering
Unsupervised clustering is often the solution to solve classification tasks for unannotated data. Our intu-

ition was that the Orcas’ call types (Ford et al., 1987; Root-Gutteridge et al., 2014) could be automatically

clustered by similarity in their pitch shape. A first step was thus to define the input to our unsupervised

clustering algorithm. Thus features of the previously extracted pitch were selected to best describe the

shape of the vocalizations with a minimum dimensionality.

The following features were chosen (Ford, 1984): argminFreq, argmaxFreq, minVel, maxVel, meanVel,

startVel, endVel, minAccel, maxAccel, argminAccel, argmaxAccel, deltaFreq. Here argmin/max stand

for the position in time of the maximum/minimum relative to the total duration. Min/max stand for

minimum/maximum values. Mean stands for the average value. Start/end stand for the mean of the

first/last 5% of the call. Delta stands for the minimum value substracted from the maximum value. Freq

stands for frequency values (the estimated pitch), Vel stands for velocity (the derivative of the pitch), and

Accel stands for acceleration (the derivative of the velocity).

Having extracted those features, they were used as an input for the HDBSCAN algorithm (McInnes

et al., 2017), which is a hierarchical implementation of the Density Based Spatial Clustering of Ap-

plications with Noise (DBSCAN) (Ester et al., 1996). Several minimum cluster sizes and minimum

sample sizes were explored, to optimize the number of output clusters, and the strictness of the clustering.

Eventually 30 and 3 were chosen for the latter parameters respectively.

4 RESULT

The clustering algorithm hardly works when applied to all the collected vocalisations together (coming

from the 5 different hydrophones with different depth and sensitivity), whereas it works decently when

applied to each hydrophone separately. Here we present the results for the H1 hydrophone (see map in Fig.

1), which represents 6796 vocalizations. Further work will focus on generalizing the clustering method to

any hydrophone after some normalization.

The HDBSCAN found 13 clusters (0 to 12; Fig. 4). The ‘-1’ cluster is the algorithm’s output of

classifying what it considers as noise. To measure the clustering’s relevance, 2 trained persons annotated

50 samples (picked randomly) from each cluster, according to the Oca call types as defined in the literature

(Ford et al., 1987). We selected a subset of 6 call types (N1,N2,N4,N7,N9,N47): the ones most commonly

found in our dataset (Fig. 3).

The distributions of call types among clusters (Fig. 4) show that our model was able in some clusters

to isolate some type (N4 in clusters 0, 1, 4, and 5), to group calls with roughly similar upward types (N2,

3/6
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Figure 3. Selected subset of call types as defined in the literature (Ford et al., 1987).

N7, N9, N47 in clusters 2 and 3), and to classify boat noise (clusters 9 and 12). Those results demonstrate

a promising approach to classifying orca vocalizations, in approximately 20 days of computation for 3

years of pentaphonic continuous recording.
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Figure 4. Distribution of call types among clusters found by the HDBSCAN algorithm. The numbers

next to the cluster name show the amount of cluterized samples. The % are from the annotated subset.

5 CONCLUSION AND DISCUSSION

Our primary results can be linked with the presence of particular pods in the area. In fact, British Columbia

(BC) is composed of different “acoustic clans”. An acoustic clan is a group of Orcas that share particular

types of calls known as discrete calls (Ford and Fisher, 1982). In the Northern BC, there are 4 main

acoustic clans: the J, R, G and A Clan. For now, we will focus on the A Clan (Fig. 5), composed of

several pods, themselves composed of groups of lineages called matrilines.

As shown in Fig. 5, there are 7 different pods in the A clan, having different call types (Ford, 1984).

For example the A4 pods can produce N2, N4, N7 and N9 call types. Some types of calls are shared

among multiple pods within the clan. For example, the N7 call extends to all pods, however each pod

produces an unique N7 call. By recognizing pods and recording the different calls, we can establish a link

between the pods and our clusters. In fact clusters 0, 1, 4, 5, and -1 have a high proportion of the N4 call
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type (Fig. 4), we can thus expect that the A1, A4, and A5 pod vocalizations are present in these 5 clusters.

The N47 call type is produced only by the A1 pods and this type is very present in 2 clusters (3 and 6), so

we can state the hypothesis that these 2 clusters correspond to the A1 pod.

With such reasoning, these clusters represent a first approach to acoustically classify pods in BC, and

in the future, matrilines (Weiß et al., 2006) and individual vocal signatures (Weiß et al., 2007).

Figure 5. Selection of the 6 Call types produced by pods of the A clan inspired from (Ford, 1984).

Future work will improve the model at each of the 3 main steps: the learned vocalization detection,

the pitch estimation that could be trained specifically to detect Orcas’ pitch (Kim et al., 2018), and the

unsupervised clustering of calls. An obvious improvement would consist in annotating more data for

training. Parameter optimization is another possible enhancement, especially for the pitch estimation

and the unsupervised clustering. For this purpose, relevant objective functions and accurate metrics need

to be found. One could consider a global objective cost function to maximise the normalised mutual

information of the bivariate distribution (Type, Cluster).

Once such an improved system is at hands, having a fully autonomous reliable Orca type call detector

and classifier will open doors to many studies on Orca’s communication and phonotactic regularities and

divergence like in Malige et al. (2019). It would also allow behavioural studies (ethoacoustics), within

various environments, including increasing anthropophony or whale watching pressure like in Poupard

et al. (2019b).
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ABSTRACT

The sperm whale bio-sonar presents many specificities, such as its size, its loudness or its vocalization

abilities. Furthermore it fulfills several roles in their foraging and social behaviour. However our knowledge

about its operation remains limited to the main acoustic path that the emitted pulse may take. We still

ignore the precise mechanisms that shape the wave and on which parts the sperm whale is able to act.

In this paper, we describe a technique to simulate the sperm whale click generation from a physical

perspective. Such an approach aims at unveiling the processes involved in their vocal production, as a

stepping stone towards a better understanding of their interaction with peers and the environment.

INTRODUCTION

Sperm whales (Physeter macrocephalus, Pm) have the loudest bio-sonar in the animal kingdom (230 dB

re: 1 µPa rms, Møhl et al. (2003)). The clicks produced by this sonar are not only used for their

echolocation during dives, but also in their social interactions. During dives sperm whales emit trains of

clicks, much like those of bats, whereas for socialization, they will emit small rhythmic groups of clicks.

Since Norris and Harvey (1972) first theorized the way their sonar worked, it has been broadly accepted

that Pm creates an initial pulse at the front of its head, in the ”museau de singe” (aka. monkey lips),

which will then bounce back and forth in its head. However, the details of such a mechanism and which

parameters the sperm whale can act on, remain unknown.

Since the 90’s (Aroyan et al. (1992)), scientists have been modeling the propagation of vocalized

sound waves in marine mammals heads. The ability to model wave propagation in marine mammals

allows to better understand the interaction between all the organs responsible for the sound creation, or

the molding of the sound wave, to achieve the highly directive beam pattern of such species (Cranford

et al. (2008), Wei et al. (2014)). To the best of our knowledge these type of simulations have not been

performed on the bio-sonar of sperm whales.

Most of these simulations are based on anatomic data derived from computed tomography scans. This

information enables the construction of the model geometry, and obtain the mechanical parameters for

each material and their location (up to the CT scan resolution). However, most of the employed scans

were performed on postmortem individuals. Cranford et al. (2014) compared data between dead and live

specimens and their effects on the simulations. Dead specimen are prone to introducing artifacts in the

model, such as air-filled blood vessels, but will not suffer from scanning errors due to the movement

of a living specimen. However these deviations are likely not to change the mechanical parameters of

the various tissues, and thus the Hounsfield unit that the CT-scan will measure, which has been shown

(Soldevilla et al., 2005) to be correlated to the density and speed of sound.

In this work we describe a physical simulation of a Pm click using geometry and materials from

dissection data and Finite Difference Time Domain (FDTD) for the wave propagation calculation.

BUILDING THE GEOMETRY

Unlike the other small marine mammals, sperm whales cannot be CT-scanned by normal means due

to their size and weight. The only tomography data available have been performed on postmortem
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Figure 1. Part of the FDTD grid. Sphere : normal stress. Triangle : velocity. Cross : cross-stress

neonate sperm whales (Cranford (1999), Huggenberger et al. (2016)). However, those models cannot be

simply scaled up since some anatomical elements do not match those of adult individuals obtained from

dissections, such as the one shown in Clarke (1978). In order to shape our model we have used dissection

data. We model each organ using Computer Assisted Design (CAD) software based on the slices from

Clarke (1978). Since single blueprints did not match each other exactly, we had to scale some of them, or

take the mean shape.

FINITE DIFFERENCE TIME DOMAIN

The method we used to simulate the sound propagation is the Finite Difference Time Domain (FDTD),

but unlike Aroyan et al. (2000), we use the stress-velocity equations which allows to model shear waves

that propagate through cross-stress.

As usual for these sort of simulations, the aim is to simulate the target body inside an infinite medium.

The standard way of getting rid of reflections from the border of the simulation, and thus simulating a

infinite medium while having a finite box, consists either of having multiple dampening layers near the

border, or having special equations for the border that will make them ’invisible’ to waves. All of those

methods are always an approximation and will still produce some reflections in certain cases. We have

used the Absorbing Boundary Condition (ABC) from Higdon (1986), with angles of 2.86 ◦ and 65 ◦.

One iteration of the FDTD consists of the update of the speed grids, then the stress grids (including

cross stress) and the ABC. The computation time of the boundary update is negligible compared to

the stress and speed update (two orders of magnitude), and we could increase the number of angle of

incidence with perfect absorption without any perceptible decrease in performance. However we consider

this number of absorption angles to be enough.

EXPERIMENT

For our experiment we had to chose the mechanical parameters for each of the simulated media (skin,

bones, spermaceti, water, etc.). While FDTD and our model are able to cope with anisotropic coefficients,

for the sake of simplicity, in this first approach we have made an isotropic assumption. We have combined

the measurements of Goold et al. (1996) (assuming a temperature of 30 ◦C and atmospheric pressure),

Clarke (1978) and the measurements done on the Kogia breviceps in Song et al. (2015). For the parameters

not found in the literature, we have used values from the human body, based on the observation that the

other parameter values are shared between the species (Physeter macrocephalus, Kogia breviceps, Ziphius

cavirostris, Homo sapiens sapiens). The little variation introduced by the values borrowed from the other

species will not have a significant impact on the results, since even a change of the order of 5% to 10%

has little effect on the resultant beam (Cranford et al., 2008). The most important factor for the position of

the various focal points is the geometry of the organs.

We simulated a sperm head in a 520∗240∗220 cm3 volume, with 1 cm resolution, and the materials

were averaged following Toyoda et al. (2012). The simulation was implemented using PyTorch (a Deep
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Figure 2. Material in the sagittal plane. Deep blue: water, blue: blubber and skin, cyan: muscle, yellow:

junk, green: spermaceti, orange: bone, dark red: air. 1: museau de singe, 2: distal sac, 3: frontal sac, 4:

right nasal passage.

Learning Python library) and run on an NVidia Titan X. The implementation performs at 4.6 iterations

per second. Thus for a simulation of 20 ms with a time step of 1 µs, the computation time is 1 h 12.

The simulation starts at rest. We then add to pressure points located next to the museau de singe in the

spermaceti the difference of a 10 kHz sinusoidal wave during one period.

Figure 3 shows a recorded sound wave of a sperm whale click and the simulated pressure at the

museau de singe. In both the recorded and simulated sounds we observe three pulses of a sperm whale

click, in the simulated case these correspond to P0, P1 and P2. In the simulation we measure an offset of

6662 bins (or µs) between each of these pulses. These intervals are known as the inter pulse interval (IPI)

and have often been used to estimate the total body length of the sperm whale (Clarke (1978), Gordon

(1991), and Growcott et al. (2011)).

While the proposed model still fails to reproduce individual pulse wave shapes, such as those found in

recorded vocalisations, it does produce a signal with a valid IPI. By using the three different methods

cited above to estimate the body size from the IPI, we obtain sizes of 14.97 m, 14.47 m and 14.12 m

respectively, which match the length of the actual sperm whale that the model is based on (14.2 m). This

result mainly depends on three parameters: the bulk modulus, the density, and the length of the spermaceti.

Yet, it is still a comforting proof that this part of the model is working.

In Figure 4, we can see the evolution of the simulation, with the sound wave propagating from the

museau de singe to the frontal sac, then being reflected by it, and going back to the museau de singe to be

reflected by the distal sac.

FUTURE WORK

The model presented here remains a rough approximation and requires further tuning to better reflect the

real phenomena. The geometry of the right nasal passage needs to evolve, in its current form it acts as a

perfect mirror and prevents the energy reflected from the frontal sac to reach the junk. The next stages of

this research will focus on the fluid-filled knobs present in the frontal sac described by Norris and Harvey

(1972). During dives, they might act as a filter, thus modifying the response of the sonar.
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Figure 3. Top: Recording of sperm whale. Bottom: Simulated pressure at the excitation point.
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Figure 4. Multiple frames of the simulation, with the stress component (normalized) being plotted.

Each picture is made of three slices of the 3D volume. The right one is the sagittal plane, the middle one

is a plane 10 cm on the left of the sagittal plane, and the left one has an offset of 20 cm regarding the

sagittal plane.
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ABSTRACT

Recent years have seen an explosion in the availability of Voice User Interfaces. However, user surveys

suggest that there are issues with respect to usability, and it has been hypothesised that contemporary

voice-enabled systems are missing crucial behaviours relating to user engagement and vocal interactivity.

However, it is well established that such ostensive behaviours are ubiquitous in the animal kingdom,

and that vocalisation provides a means through which interaction may be coordinated and managed

between individuals and within groups. Hence, this paper reports results from a study aimed at identifying

generic mechanisms that might underpin coordinated collective vocal behaviour with a particular focus

on closed-loop negative-feedback control as a powerful regulatory process. A computer-based real-time

simulation of vocal interactivity is described which has provided a number of insights, including the

enumeration of a number of key control variables that may be worthy of further investigation.

INTRODUCTION

Background

Recent years have seen an explosion in the availability of ‘voice user interfaces’ (VUIs), initially stimulated

by the 2011 launch of Siri - Apple’s smartphone-based voice assistant - followed in 2015 by Amazon’s

release of the first ‘smart speaker’ - Alexa. Since then, such smartphone and smart speaker based voice

assistants have become almost ubiquitous. For example, Siri has had over 40 million monthly active users

in the U.S. since July 2017, and smart speaker shipments reached 78 million units worldwide in 20181,2.

In the U.K., the number of people who own a smart speaker doubled from one-in-twenty to one-in-ten

over a period of just six-months from autumn 2017 to spring 20183.

However, setting aside the impressive sales figures, a more critical aspect of such voice assistants is

the extent to which they are actually used. For example, a survey conducted in 2015 (i.e. prior to the

appearance of the first smart speaker) found that only 26% of the respondents used a voice assistant

regularly and the majority of voice assistant users preferred typing to talking (Moore et al., 2016a). A

more recent study by Kim (2019) investigating the usage of voice assistants on both smartphones and

smart speakers found that over half of the smart speaker owners used their voice assistant several times a

day. In contrast, only one-third of smartphone owners used their voice assistants on a daily basis, and half

hardly used their voice assistants at all.

These studies also reveal that the majority of users employ quite stylised language, e.g. using simple

voice commands to access music playlists, to perform searches using spoken queries, or to set alerts and

reminders. Such shallow linguistic interaction is somewhat predictable given the nature of the problems

users encounter with contemporary voice-enabled devices. For example, nearly half of the users surveyed

reported difficulties with not being understood or simply not being able to do very much.

1https://medium.com/swlh/the-past-present-and-future-of-speech-recognition-

technology-cf13c179aaf
2https://www.canalys.com/newsroom/smart-speaker-market-booms-in-2018-driven-by-

google-alibaba-and-xiaomi
3https://yougov.co.uk/topics/politics/articles-reports/2018/04/19/smart-speaker-

ownership-doubles-six-months
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Key challenges

The usage statistics reported above confirm that contemporary VUIs are still a long way from being able to

provide the “conversational interface” often promoted in the marketing literature for such systems. Indeed,

the fact that users are effectively resorting to ‘voice button-pressing’ suggests that there is a fundamental

difference between the richness of everyday human-human spoken language and the simplicity of the

voice-based interaction that takes place between humans and machines. It has been argued elsewhere

that a ‘mismatch’ between interlocutors is not only an important obstacle that needs to be explored in

a human-machine context (Moore, 2015), but that it may even be an unsurmountable problem (Moore,

2016). In particular, if spoken language interaction is viewed as being based on the co-evolution of two

key traits – ostensive-inferential communication and recursive mind-reading (Scott-Phillips, 2015), then

contemporary voice-based systems are essentially only dealing with one aspect – inference. Some of the

high-level issues relating to recursive mind-reading have been addressed in Moore and Nicolao (2017), but

low-level concerns relating to ostensive vocal behaviour remain an open question. Hence, there seems to

be something essential missing from contemporary voice-enabled system in the area of user engagement

and interaction – not just what to say, but when to say it and, in a group context, to whom (Moore, 2015).

Potential solutions

Of course, interactive ostensive behaviours are ubiquitous in the animal kingdom, and vocalisation

provides a means through which such activities may be coordinated and managed between individuals

and within groups (Moore et al., 2016b). Vocalisations are often carefully timed in relation to each other

(and other events taking place in an environment), and this may take the form of synchronised ritualistic

behaviour (such as rhythmic chanting, chorusing or singing) or antisynchronous turn-taking (which can

be seen as a form of dialogue) (Cummins, 2014; Fusaroli et al., 2014; Ravignani et al., 2014).

Of particular interest here are the mechanisms that support the emergence of synchronised vocal

interactivity in crowds, flocks and swarms, and the implications of those mechanisms for future voice

user interfaces. Hence, this paper presents results from an investigation into such mechanisms using a

real-time simulation (i.e. a computational model) of interactive vocal dynamics and synchrony.

COLLECTIVE BEHAVIOUR

The coordinated behaviour of large numbers of independent living organisms has been the subject of

scientific enquiry for many years. For example, studies have been conducted into the flocking of birds

(Reynolds, 1987), the synchronised flashing of fireflies (Ermentrout, 1991), the dynamics of human

crowd movement (Still, 2000), waves of coordinated clapping by audiences (Néda et al., 2000), and

spatial sorting in shoals of fish (Couzin et al., 2002). Of particular interest are the transitions from one

type of collective behaviour to another, especially in the context of attraction and repulsion between

individuals (Katz et al., 2011), and predator-prey interactions (Handegard et al., 2012). Much of the

research has involved computational simulation (perhaps the most famous being ‘Boids’4), as well as

physical implementations in the field of swarm robotics, e.g. Bo et al. (2005).

One important aspect of synchronous behaviours is that they involve parallel coupled simultaneous

action, as opposed to sequential action-reaction (Cummins, 2011). Such collective behaviours can thus be

viewed as rhythmic entrainment, and thereby constitute a form of accommodation between individuals in

a population (De Looze et al., 2014). It has also been posited that such behaviours underpin the links

between different modalities, such as between vocalisation and physical movement (Cummins, 2009).

Vocal Synchrony

Whilst there have been a number of studies of vocal synchrony in animals, e.g. male zebra finches

(Benichov et al., 2016) and monkeys (Takahashi et al., 2013), what is important here is the synergy

with human vocal behaviours. Much of this work has involved ‘joint speech’, i.e. people speaking in

unison (Cummins, 2014), and a more sophisticated view of ‘turn-taking’ in human dialogue (Heldner

and Edlund, 2010). Of particular relevance is evidence that verbal synchrony in large groups of people

produces affiliation (von Zimmermann and Richardson, 2016), and that some conversational partners tend

to converge their vocal behaviours (Edlund et al., 2009), while others do not (Assaneo et al., 2019).

4https://www.red3d.com/cwr/boids/
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Mechanisms

With regard to the mechanisms underpinning coordinated collective behaviour, by far the most popular

approach is based on coupled oscillators (Kuramoto, 1975; Strogatz and Stewart, 1993; Strogatz, 2012),

particularly through ‘pulsatile coupling’ (Mirollo and Strogatz, 1990). Not only has this been a very

productive modelling paradigm with real-world implications (such as the simulation of clustered synchrony

in electricity distribution networks (Pecora et al., 2014)), but new results are continuing to emerge

(Matheny et al., 2019). The coupled-oscillator paradigm is also attractive because of its potential

compatibility with known neural mechanisms (Ermentrout, 1991; Matell and Meck, 2000). However,

it is only one way of formulating a complex non-linear attractor space, and it overlooks a number of

potentially important conditioning variables – e.g. energetics (Moore, 2012).

As a consequence, the work reported here departs from the standard coupled-oscillator approach. In

particular, attention is given to an alternative paradigm for creating a space of behavioural attractors –

‘closed-loop negative-feedback control’ – a powerful regulatory mechanism with roots in ‘cybernetics’

(Wiener, 1965) and commonly deployed for stabilising engineering systems (DiStefano III et al., 1990) as

well as providing a powerful non-behaviourist paradigm for modelling the behaviour of living systems

(Powers, 1973). The main differences between this approach and coupled oscillators is that the conver-

gence criteria can be made more explicit, thereby offering the potential to gain a deeper understanding of

the implications of particular parameters/settings on the emergent collective behaviours. It also offers

the advantage that it can, in principle, be generalised to the synchronisation of more complex metrical

structures, e.g. as discussed by Fitch (2013).

SIMULATION FRAMEWORK

Basic principles

The basic operation of classic closed-loop negative-feedback control is as follows: (i) a reference signal

specifies the desired consequences of a system’s actions, (ii) the actual consequences are sensed/interpreted

by the system and compared with the reference target, (iii) the resulting error generates a control signal

that drives the system in a direction such that the error is minimised. The process continues around the

loop causing the system to not only converge to the desired behaviour but, more significantly, to maintain

that behaviour in the face of arbitrary disturbances without having to sense such disturbances directly.

The tracking behaviour of such a negative-feedback control system is a function of the ‘loop gain’

of the controller. If the loop gain is too low, then stabilisation may take a long time – an ‘overdamped’

system. On the other hand, if the loop gain is too high, then the system may overshoot and even oscillate

– an ‘underdamped’ system. The point here is that the loop gain effectively corresponds to the degree

of effort (energy) applied to a regulatory task, i.e. from a psychological standpoint, it is analogous to

motivation. An agent that ‘cares’ about controlling a particular variable would have a high loop gain,

whereas a loop gain of zero implies the agent doesn’t care at all (i.e. it gives up control). These are

important individual differences that are not explicit in the coupled-oscillator approach.

Implementation

The simulations described herein have been implemented in Pure Data5 – known as “Pd” – an open-

source object-oriented dataflow programming language that is designed for real-time audio processing

(Farnell, 2008). An environment has been constructed in which any number of vocalising (and listening)

‘agents’ may be connected to each other in arbitrary network topologies. Each agent comprises two

feedback-control loops: one to regulate the interaction with other agents and another to regulate the

agent’s own behaviour. The first of these control loops aims to maintain synchrony between an agent’s

own vocalisations and those from agents that it can ‘hear’ (i.e. those to which it is connected). The second

control loop attempts to maintain the agent’s own preferred vocal rhythm. This arrangement means that

each agent has two control parameters that influence the priority given to ‘self’ versus ‘other’.

In addition, each agent has settings for the amplitude and duration of its vocalisations, their phase

relation with the rhythmic ‘beat’, and the agent’s preferred rhythm. In principle, these parameters could

also be the subject of optimisation using feedback-control, but this was not implemented in the experiments

reported here.

5http://puredata.info/

3/6

Proc. 2nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, UK, 29-30 Aug 2019

96



The sound output from each agent was produced using real-time synthesis of human, bird or insect

vocalisations (as selected by the user). Other vocal characteristics for each agent (e.g. pitch frequency)

were initialised randomly in order to provide a moderate level of ‘individuality’.

Figure 1 illustrates a particular configuration of the simulation environment.

Figure 1. Screenshot of the user interface for the Pd-based vocal simulation environment. The main control panel

is shown in the top-left corner; buttons and sliders allow a user to specify global parameters for the population of

agents, such as the type of vocalisation (human, insect, bird), duration, loudness etc. The lower half of the user

interface facilitates the creation of an arbitrary number of agents, and the specification of which agent is listening to

which other agent(s). In the example shown, eight agents have been configured in a loop topology (agent-2 is listening

to agent-1, agent-3 to agent-2, agent-4 to agent-3, . . . , agent-1 to agent-8). As can be seen, sliders on each agent

allow a user to set parameters individually if required. The graph shown at the top-right of the interface displays

a timeline of the overall vocal synchrony between the agents, and the graph shown across the middle displays the

individual rhythmic ‘beats’ from each agent (bunching indicates a degree of synchrony).

Experiments
A range of experiments has been conducted based on varying numbers of interacting agents, different

interconnection topologies, and alternative parameter settings. There is not space here to report all the

findings. So what follows is a selected highlight.
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Figure 2. Relationship between a ‘slave’ agent’s position

in a chain and its vocal synchronisation error with respect

to the ‘master’ agent at the head of the chain.

One of the overarching research questions

is concerned with the relationship between the

topological connections between agents (i.e. the

‘ostensive’ relationships) and the emergent col-

lective behaviour of the agents. In this context,

one particular configuration is a chain with a

‘master’ (pacemaker) agent and a sequence of

‘slave’ agents. Figure 2 illustrates the outcome

of simulating such a configuration with a chain

of eight agents. As can be seen, on average, all

of the agents in the feedback-control configura-

tion maintained synchrony, but the agents further

down the chain exhibited less stable rhythms. In

contrast, agents in an action-reaction configura-

tion maintained the rhythm, but the agents further

down the chain were increasingly out of sync.
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DISCUSSION & CONCLUSION

As a result of this research, it is possible to draw some conclusions about the control variables that are

worthy of investigation with respect to vocal interactivity. These are summarised in Table 1.

Table 1. Dimensions of vocal interactivity identified in this study. The left-hand column specifies the relevant control

variables, and the right-hand column gives an indication of the expected range of values.

VOCAL AGENTS

Individuality (e.g. style of vocalisation) average ⇔ extreme

Ostention (i.e. stance towards other agents) connected ⇔ disconnected

Intentionality (i.e. goals wrt other agents) same ⇔ different

Motivation/effort expended on pursuing others’ goals high ⇔ low

Motivation/effort expended on pursuing own goals high ⇔ low

VOCALISATIONS

Intensity (e.g. volume) low ⇔ high

Clarity (e.g. intelligibility/SNR) low ⇔ high

Period (i.e. timing) short ⇔ long

Mark-to-space ratio (i.e. duration) 0% ⇔ 100%

Sentiment (i.e. valence) -ve ⇔ +ve

Meaning (e.g. category) named-entity-1 ⇔ named-entity-2

VOCAL INTERACTVITY

Synchrony (i.e. engagement) low ⇔ high

Simultaneity (i.e. overlap/interleaving) 0% ⇔ 100%

Dependency (i.e. between vocalisations) dependent ⇔ independent

In conclusion, this paper has outlined some of the key issues facing contemporary voice-user interfaces,

with a special focus on emergent properties of collective vocal behaviour, especially ostensive interaction

and timing. The focus has been on closed-loop negative-feedback control as a regulatory mechanism,

which implements a coincidence detection scheme that is compatible with known neural mechanisms

(Matell and Meck, 2000). The simulation of real-time interacting vocal agents has already provided a

number of insights into such behaviour, and more are expected as the full parameter space is investigated.

In particular, it should be possible to show (i) how dialogue emerges as a compensatory response to the

automatic regulation of intelligibility, not as a trivial action-reaction behaviour (Benichov et al., 2016),

(ii) how cooperative vs. competitive interaction conditions vocalisations, and (iii) how communicative

behaviour emerges from vocal interaction (Rosenthal et al., 2015).
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